

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

The impact of microwave sounder radiance assimilation in the Nordic and Arctic regions

Reima Eresmaa, Per Dahlgren, Susanna Hagelin, David Schönach, Adam Dybbroe

18.4.2024

Arctic Weather Satellite (AWS) is coming – are we ready?

- Launch 2024/Q3
- AWS will include *microwave* sounding capability with channels sensitive to atmospheric temperature and humidity
- Serves as a demonstrator mission for the EUMETSAT EPS-Sterna constellation:
 - \rightarrow Targeting continued maintenance of six operational low-cost satellites in a constellation of three complementary orbital planes from 2029 onwards
- Research funding from the European Space Agency (ESA) to support early exploitation of AWS satellite data in NWP
 - \rightarrow "Performance evaluation of the Arctic Weather Satellite data"
 - \rightarrow A four-year project kicked off in December 2021
 - \rightarrow WP2: Preparing the HARMONIE-AROME system for AWS radiances (see Magnus Lindskog's presentation)
 - → WP3: Constellation Impact Studies
- As a 1st step, we evaluate the <u>expected constellation impact</u> on the basis of the impact we get from the *currently operating* microwave sounders

The currently operating satellites with microwave sounding capability

	Spacecraft	Launch date	Equator crossing local tim	ial in ne	Microwave temperature sounding	Microwave humidity sounding
Satellites in <u>drifting</u> orbits (no orbit maintenance)	NOAA-18	05 / 2005	((10:40))	AMSU-A	(MHS)
	NOAA-19	02 / 2009	((09:10))	AMSU-A	MHS
	FengYun-3D	11/ 2017	((02:25))	(MWTS2)	MWHS2
Satellites in maintained " <u>afternoon</u> orbits"	Suomi-NPP	10 / 2011	01:30		ATMS	
	NOAA-20	11 / 2017	01:30		ATMS	
	NOAA-21	10 / 2022	01:30		ATI	MS
Satellites in maintained " <u>morning</u> orbits"	Metop-B	09 / 2012	09:30		AMSU-A	MHS
	Metop-C	11 / 2018	09:30		AMSU-A	MHS
A satellite in a maintained f " <u>early-morning</u> orbit" (FengYun-3E	07 / 2021	05:30		(MWTS2)	MWHS2
	Currently in use (at MetCoOp)	In passive monitoring (no (at MetCoOp) Harm		(no s Harmo	support in onie-Arome)	(no fast data access)

Can we simulate the EPS-Sterna constellation using the satellites that are already in orbit?

- Short answer: no, we can't
- Instead, we will evaluate the impact of bringing new satellites into the assimilation system one by one
- We repeat the exercise in two scenarios:
 - \rightarrow "Single orbit": all satellites will go into the same orbital plane
 - → "Complementary orbits": satellites will each go into a new orbital plane
- We can go up to 3 satellites in either scenario

The experiment setup

- We use NWP system settings that are (for most parts) similar to the operational setups at MetCoOp and AROME-Arctic
 - → Harmonie-Arome Cy43
 - $_{\rightarrow}\,2.5$ km grid and 65 model levels (model top at 10 hPa)
 - → Microwave sounder radiance assimilation in clear-sky conditions only but including the low-peaking channels over sea, sea ice and land

<u>However:</u>

- \rightarrow 4D-Var upper-air data assimilation (rather than 3D-Var as in operations)
- \rightarrow Only deterministic runs (omitting the ensemble system characteristics)
- \rightarrow Forecast is run out to +36 lead time four times a day (00, 06, 12, 18 UTC)
- \rightarrow Forecast only out to +3 hours at the intermediate 3-hourly cycles
- Five model runs in each domain:
 - \rightarrow 1-satellite baseline run using microwave-sounder data from FengYun-3D only
 - \rightarrow 2-satellite run in the single-orbit scenario: add NOAA-20
 - \rightarrow 3-satellite run in the single-orbit scenario: add NOAA-20 and Suomi-NPP
 - \rightarrow 2-satellite run in the complementary-orbits scenario: add Metop-B
 - \rightarrow 3-satellite run in the complementary-orbits scenario: add Metop-B and NOAA-19

On the choice of experiment dates

- The cost of running 4D-Var limits the time span of the experiment
- But, we also want to run long enough to allow for statistically robust evaluation of the impact
- We are interested in evaluating the impact in winter and in summer
- To maximize the separation between the three orbital planes, it is useful to choose dates around 2020

The initial set of model runs (six weeks each):

- \rightarrow From 29 June to 9 August 2020 in the AROME-Arctic setup
- → From 28 December 2020 to 7 February 2021 in the MetCoOp setup
- The model runs are warm-started from a spun-up model state that includes appropriate initial bias correction coefficients for satellite data

Table 1: Evolution of the equatorial crossing times

	09/2020	09/2021	09/2022	Tendency
Metop_B	09:30	09:30	09:30	~0
NOAA_19	6:20	7:10	8:00	+50 min/year
Suomi_NPP	1:30	1:30	1:30	~0
NOAA_20	1:30	1:30	1:30	~0
FengYun_3D	1:25	1:40	1:55	+15 min/year

On the choice of experiment dates

- To maximize the separation between the three orbital planes, it is useful to choose experiment dates earlier than 2021
- The cost of running 4D-Var limits the time span of the experiment
- But, we also want to run long enough to allow for statistically robust evaluation of the impact
- We are interested in evaluating the impact in winter and in summer

The initial set of model runs (six weeks each):

- → From 29 June to 9 August 2020 in the AROME-Arctic setup
- \rightarrow From 28 December 2020 to 7 February 2021 in the MetCoOp
 - setup

 The model r that include satellite data

- el r +An additional set of model runs (three weeks each):
- \rightarrow From 29 June to 19 July 2020 in the MetCoOp setup
- lite dat \rightarrow From 28 December 2020 to 17 January 2021 in the AROME-Arctic setup
 - The additional model runs include only the 1-satellite baseline and the 3-satellite run in the complementary-orbits scenario

Table 1: Evolution of the equatorial crossing times

	09/2020	09/2021	09/2022	Tendency
Metop_B	09:20	09:25	09:30	+5 min/year
NOAA_19	6:20	7:10	8:00	+50 min/year
Suomi_NPP	1:25	1:25	1:25	~0
NOAA_20	1:30	1:30	1:25	~0
FengYun_3D	1:25	1:40	1:55	+15 min/year

7

Results

Near-surface <u>temperature</u>, <u>humidity</u>, and <u>cloud</u> forecasts benefit from the satellite data assimilation

-Verification of the 3-satellite run in the <u>complementary-orbits</u> scenario against the 1-satellite baseline run in the <u>MetCoOp</u> domain in <u>winter</u>

Near-surface temperature, humidity, and cloud forecasts benefit from the satellite data assimilation

Near-surface <u>temperature</u>, <u>humidity</u>, and <u>cloud</u> forecasts benefit from the satellite data assimilation

200

180

160

120

200

180

160

120

100

cases

cas

140 Š

-Verification of the 3-satellite run in the <u>complementary-orbits</u> scenario against the 1-satellite baseline run in the <u>MetCoOp</u> domain in <u>winter</u>

How does the impact from different satellites build up?

-The impact in the "complementaryorbits" scenario is twice as large as the impact in the "single-orbit" scenario:

 \rightarrow In 2-satellite runs: *red* -*vs*- *black*

 \rightarrow In 3-satellite runs: green -vs- blue

-The impact of 2 additional satellites is <u>50% larger</u> than the impact of 1 additional satellite:

- → In the single-orbit scenario: *blue -vs- black*
- → In the complementary-orbits scenario: *green -vs- red* ;

There is more impact in the MetCoOp domain in winter (panels at top) than in the AROME-Arctic domain in summer (panels at bottom)

<u>The additional set of model runs</u> shows more impact in the AROME-Arctic domain in winter (bottom) than in the MetCoOp domain in summer (top)

50 g

cas

40 ²

The anticipated impact from the EPS-Sterna constellation in the North

We can expect the following:

- \rightarrow A boost in the forecast performance in near-surface temperature, humidity and cloud cover
- \rightarrow The greatest benefit is in the forecast of humidity and cloud cover out to +24 hour lead time
- \rightarrow The positive impact will be more pronounced in winter than in summer

How do we produce a quantitative estimate of the constellation impact?

Let's make a series of assumptions:

- 1. The 1-satellite baseline run of this work is representative of a state-of-the-art limitedarea NWP system at the time when the EPS-Sterna constellation becomes operational
- 2. The EPS-Sterna constellation will consist of *six satellites placed in two complementary orbital planes* (i.e. three satellites in each plane)
- 3. The impact of *two satellites added into complementary orbits* is representative of a hypothetical impact from a combination of *two AWS satellites operated in complementary orbital planes*
- 4. *Doubling the number of added satellites* will enhance the constellation impact by 50%
- 5. Another 50% increase in the number of new satellites will enhance the constellation impact by another 25%

The constellation impact may be <u>up to ~80...90% larger</u> than the impact we have demonstrated for the three-satellite, complementary-orbits run against the one-satellite baseline

The anticipated impact from the EPS-Sterna constellation in the North

METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Summary

-The verification suggests a stronger impact from microwave sounders in winter than in summer

-There is a robust impact in the forecast of near-surface temperature and humidity as well as cloud cover, but no solid evidence of impact in upper-air forecast fields

-In terms of forecast RMSE reduction, the EPS-Sterna constellation impact may be up to 5-10% in cloud cover and humidity, but only up to 2-3% in temperature

-This impact evaluation is based on the current modelling and assimilation system: there will be NWP developments in the coming years that may potentially enhance the impact further.

