State of regional climate modelling in Belgium with the ALARO model

<u>Wout Dewettinck</u>, Kobe Vandelanotte, Nicolas Ghilain, Daan Degrauwe, Rafiq Hamdi, Hans Van De Vyver, Michiel Van Ginderachter, Bert Van Schaeybroeck, Steven Caluwaerts and Piet Termonia

Why use the ALARO NWP model for regional climate modelling?

- To study impact of climate change on precipitation extremes (flooding) we need convection-permitting models
- Higher resolution is needed to compute **very local features**, e.g., in the case of urban effects.
- Coordinated regional climate model ensembles (CORDEX) can only run at mesoscale resolutions
- **NWP models** are pioneering in the convection-permitting scales
- ALARO has a grey-zone convection scheme, so has resolution-adaptive deep convection parametrization
- **Climate validation** is an alternative validation of the model:
 - $\,\circ\,$ Identify model biases
 - $\,\circ\,$ Does the model correctly construct the climatology?
 - $\circ\,$ Does the resolution add value?

Previous works

- Validation of ALARO-0 in EURO-CORDEX (Giot et al. 2016)
- Evaluation of ALARO-0 over CAS-CORDEX domain (*Top et al. 2021*)
- **CORDEX.be I** project (*Termonia et al. 2018*)

Current projects

- 1. Convection-permitting model downscaling to study extreme precipitation over Belgium
- 2. CORDEX.be II
- 3. Contributions to EURO-CORDEX
 - Aerosols in ALARO-1
 - Land cover adaptation tools

Convection-permitting model downscaling to study extreme precipitation over Belgium

Convection-permitting model downscaling to study extreme precipitation over Belgium

- Long, continuous simulations
- 1992 2022 (31 years)
- Coupled to ERA-5 reanalysis
- ALARO-1 (CY43T2)
- SURFEX v8.0 coupled in-line (for some resolutions)
- 4 different resolutions

Details of simulations

Resolution	Domain	Period	SURFEX	Coupling	Time- step	Number of vertical levels	Hydro- static
25 km	251 x 251 points (EURO- CORDEX)	1992 – 2022	No	ERA-5 reanalysis data	450 s	46	Yes
12.5 km	499 x 499 points (EURO- CORDEX)	1992 – 2022	Yes, v8.0 (TEB, ISBA, SEAFLX, WATFLX)	25-km simulation	300 s	46	Yes
4 km	421 x 421 points (Belgian operational NWP domain)	1992 – 2022	Yes, v8.0 (TEB, ISBA, SEAFLX, WATFLX)	12.5-km simulation	180 s	46	Yes
1.3 km	421 x 421 points	1992 – 2022 (ongoing)	Yes, v8.0 (TEB, ISBA, SEAFLX, WATFLX)	4-km simulation	45 s	87	No

Average annual precipitation

4.0-km simulation (1992-2022)

Observations

Average annual temperature

4.0-km simulation (1992-2022)

11.5

11.0

10.5

Temperature (°C)

- 9.5

8.5

8.0

7.5

IDF curves from simulations

Downscaling CMIP6 GCMs with ALARO

ALARO will downscale 3 CMIP6 GCMs at 4km resolution over Belgium.

3 GCMs

- CNRM-ESM2-1
- EC-Earth3-Veg
- TBD

GCM Coupler* used to couple to EC-Earth3-Veg GCM selection procedure see <u>website</u>.

Future Periods

two 20-year periods:

- +2°C GWL
- +3°C GWL

GCM (SSP) ____

Double Nesting approach

12km EURO-CORDEX Domain

4km (Large) Belgian Domain

COmbining Regional Downscaling EXpertise in Belgium

Goal

Update Belgian climate scenarios

How

Develop a convection permitting ensemble for Belgium.

ALARO will downscale 3 CMIP6 GCMs at 4km resolution over Belgium as part of this project.

Belgium CPM ensemble: 3 RCMs, 8 GCMs, 4 SSPs and Two 20year Future periods (+2°C GWL & +3°C GWL)

RCM	ALARO1-SFX	COSMO-CLMv6	MARv3.14
driving_GCM 🔶		÷ ÷	\$
CMCC-CM2- SR5			SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
CNRM- ESM2-1	SSP2-4.5, SSP5-8.5, hist		
EC-Earth3-Veg	SSP2-4.5, SSP5-8.5, hist	SSP2-4.5, SSP5-8.5, hist	SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
ERA-5	evaluation	evaluation	evaluation
IPSL-CM6A-LR			SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
MIROC6		SSP2-4.5, SSP5-8.5, hist	SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
MPI-ESM1-2- HR			SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
NorESM2-MM			SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, hist
TBD	SSP2-4.5, SSP5-8.5, hist		

Illustration of the periods downscaled by the respective RCMs for each included GCMs SSP pair.

EURO-CORDEX CMIP6: Aerosols in ALARO-1 (climate)

ACRANEB1 (Masek et al (2016): https://doi.org/10.1002/qj.2653)

- Broadband radiation scheme
- Accepts 6 classes of Aerosols (Maritime, Continental, Desert, Urban, Volcanic, Sulphate)
- Inherent Optical Properties (IOP): AOD (Aerosol Optical Depth), SSA (single scattering albedo), ASY (asymmetry factor)

Current climatology

- (1) Maps (latlon 4X5deg) AOD@550nm, 4 species (Tegen1997) [Files: tegen_mxx step9 e923]
- (2) IOPs 61 SW bands Hess (1998) → Avg into 1 broadband [Hard Coded]

Goal: first solution to meet CMIP6 Euro-CORDEX requirements

• Verification (ERA5) run: MERRA2 AOD_{monthly} (1980 –)

→ ALARO1: total column AOD by class + replace clim files (no change other IOPs) (contact with J. Masek (CMHI))

• <u>CMIP6 runs</u>: GCM AOD_{monthly}

→ ALARO1: adoption of HCLIM solution (contact with G. Nikulin (SMHI))

Land cover change: mitigation scenarios Adapting tools for ALARO 1-SURFEX v8.0 simulations

- 1. User-defined changes: user-interface tool to easily modify ECOCLIMAP (I & II) land cover & parameters
- Sub-domain selection:

Example: over Brussels 50 % reduction of urban tiles: convert to nature (80% F, 15% G, 5% C)

161 Sport facilities (2%) 166 Temperate crops (19% 182 Temperate pastures (1%) emperate complex cultivation pat. (8% 193 Crops and woodland (7%) 203 Temperate broad-leaved forest (8%) 211 Temperate coniferous forest (0% 218 Mountain mixed forest (3%) 228 Moutain moors & heath lands (0%

59 Mineral extraction, construction sites (0% 151 Dense urban (29 53 Temperate sub-urban (40% 156 Road and rail networks (1% 158 Airport (1%) 159 Mineral extraction, construction sites (0%)

ECOCLIMAP I (or II) original land cover

ECOCLIMAP I (or II) modified land cover

Possibility to change the COVER parameters for a sub-domain! Rewrite necessary files for PGD: ECOCLIMAP | GLOBAL V1.5.dir & ecoclimapl_covers_param.bin

2. FPS LUCAS: yearly land cover change experiment 12.5 km over EURO-CORDEX domain Scenario SSP1-2.6 Scenario Land Use (LUCAS PFT (Hoffman 2022) → "Ecoclimap")

218 Mountain mixed forest (0%)

228 Moutain moors & heath lands (0%)

Belgian landcover for 2100 (SSP5-8.5)

14

Conclusions

- Going to high resolution adds value for climate runs
 - by better representing precipitation extremes
 - by computing very local features such as urban heat island
- ALARO will downscale 3 CMIP6 GCMs at 4 km resolution over Belgium as part of CORDEX.be II project
- ALARO will contribute to EURO-CORDEX
 - by modifying aerosol scheme to meet CMIP-6 requirements
 - by participating in LUKAS FPS with yearly land cover changes

Thank you for your attention!

Contact: wout.dewettinck@ugent.be