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Fundamental question: Processes become
partly resolved, what to do?
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Here considering 3 schemes: ¢ convection

e turbulence
e cloud (!?)



Statistical cloud scheme - grey zone??

Cloud scheme

Grid box

Turbulence scheme Convection scheme

However, in Arome and Harmonie-Arome there is a third contribution from the
extra variance term! (see de Rooy et al., 2022 GMD)

Suggestion: linear decrease from current value at 2.5km to 0 at 100m resolution (LES)



Convection and turbulence in the grey zone

Rachel Honnert plot (e.g. Honnert 2011, JAS)
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Boundary layer height h or h+h_as an estimate of the scales
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LES: h or h+h_less trivial.

Several options tried but best:

Top level with q>0 or if no q,
height with minimum w’@,’

Harmonie-Arome: h or h+h_ Decrease Mass flux with
Very simple: Termination height f(Ax/h) (Lancz et al. 2018)
moist and/or dry updraft. But

Moist €<>dry - New possibilities! Now separately for dry
(h) and moist (h+h,)



Start with a simple case of (very) shallow convection
16t July 2022
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h or h_generally okay with q, or w’8,’ criteria



In the cloud (LES results)

LES domain =15x15km?2

Honnert diagram at z =1051m (8.00h)
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Dry boundary layer (LES results)

Honnert diagram at z =300m (8.00h)
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Scales in sub-cloud:
* momentum smaller

* In general sub-cloud
smaller scales



Preliminary results with HARMONIE-AROME with
scale-aware convection scheme

HARMONIE-AROME 500x500m? resolution
total cloud cover

tcc

convection scheme on scale-aware convection

To be checked with observations!
Default UVmix=off but small impact this case.
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Preliminary results with HARMONIE-AROME with
scale-aware convection scheme

HARMONIE-AROME 500x500m? resolution
resolved vertical velocity
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convection scheme on scale-aware convection

convection scheme off

Scale aware scheme positioned in between full and no convection

* First impression: scale aware scheme behaves as expected (also for energy spectrum)



Mass flux reduction factor 16™" July run in scale aware runs

Reduction dry mass flux Reduction moist mass flux

2500m run

e Even at this resolution
some attenuation!
(mostly for moist MF)

e Tests also for typical
operational resolutions?

<= NB scale!
max=0.76

500m run

 More substantial
attenuation

* Small scale structures
also for dry MF!




So far only convection considered but especially at higher
resolutions also turbulence needs to be scale-aware

Weakening parameterisations

< Moist convection
< Dry convection
‘ urbulence
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Applying conditional sampling in LES we can divide that part of the total transport
to be done by the convection and by the turbulence scheme!



LES result: partitioning total transport in convection and turbulence (simple case)

at 1051m (middle cloud layer) , 8h

& Parametrized u'w’
& Parametrized v'w by convection scheme

& Parametrized v'w by turbulence scheme
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Similar behavior 6, and g, but
momentum different!

Remake these plots with HARMONIE-AROME!



Discussion, outlook

. . L™
~ * LES are an important tool to develop scale-awareness in our models (Honnert)

 Many exciting topics like: differences g, T, uv, (un)organized convection, etc.

 preliminary results, like:
-first results simple case promising for scale-aware convection
-momentum is different from T, g

what about intrinsically stochastic? (important for high resolutions)

Simple start is important but EUREC4A gives unique opportunity to extend to

robust, more generic model developments. (Horizontal) organization
complicates things (Alessandro Savazzi et al.).
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DALES

Coarse graining with running mean

Resolved moisture flux atz =1051m (8.00h), Ax = 1920m
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LES
gridbox

NWP gridbox

ﬁ

The importance of LES models

(that resolve convection)

convection

"convection

NWP- or Climate model:

Do  o(w'¢")
Dt 0z *

Fg

w' @' = total turbulent transport
(sub grid for NWP or
climate models)

LES total

=>w'e'

P=Q—@ é
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Convective transport LES

W,¢,t0tal = acW’_qb’C + (1 - ac)W’(p,e +ac(1—ar))(we —we)(Pe — de)

l = cloudy LES gridbox

Define cloud with a conditional
sampling, e.g.: 0,>0, ¢q,>0 w>0

0" =g, == [[pdxay

cloudy

. ‘ area

M
~a W, (¢c _¢e) = ;((Dc _(De) = W,¢’

LES convection,total

Convective transport

(major part of total) g

Investigate (bulk) mass flux
approach in LES including its
parameters!
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