

4th ACCORD All Staff Workshop - Norrköping

Evaluation of AROME model Valley Wind Simulations in the Inn Valley, Austria

Sensitivity to Horizontal Grid Resolution

NWP Group GeoSphere Austria – ACINN Benedikt Wibmer, Clemens Wastl, Alexander Gohm benedikt.wibmer@uibk.ac.at

16th April 2024

- Introduction to topic
- Research site CROSSINN field campaign
- Setup AROME-Aut
- Case study IOP8
 - challenges valley wind simulations
 - impact horizontal grid resolution
- Summary

Motivation – valley wind simulations

- common local aspect in Inn Valley, Austria
 - intensively studied in past (e.g., Vergeiner and Dreiseitl 1987; Zängl 2004, 2009; Gohm et al. 2009)
 - thermal forcing, pressure-driven channelling, forced-channelling
 - local weather conditions, air pollutant transport, clouds, precipitation
- lack of detailed three-dimensional evaluations for NWP models
- influence grid resolution
 - weak response mean wind flow characteristics Δx < 1.0 km (e.g., Umek et al. 2022, Fritz 2023)
 - potential to further enhance prediction
- performance and sensitivity to Δx for AROME-Aut simulations
 - case study CROSSINN field campaign

🕻 GeoSphere 📕 universität

Research site - CROSSINN

- Field experiment to study 3D flow structure in Inn Valley (Adler et al. 2021)
 - August to October 2019
 - IOP8: 13 14 September 2019
- in situ and remote sensing observations
 - Lidars, Radiosondes
- AWS stations

Me GeoSphere universität

(Adler et al. 2021)

	OP2500	OP1000	OP500		. / / /	Ø provide i i	1				~
Model version		CY46t1	I		0.5 km 1.0 km	23	es:	1.10	P >		
Horizontal resolution	2.5 km	1.0 km	0.5 km	50°N	IFS/LACE	1 FE		in a	· fo	2	
Number grid points	600 x 432	1500 x 1080	1250 x 960				3	- Andrew	5	a from	Jung
Time step	60 s	40 s	20 s	45°N			Lan	2 p	and the	Jun -	102
Vertical levels		90			8		2 mil	2 X	EK-	A	30
Initialization atmosphere		3DVAR - IFS		40°N	13.6	125		- Can	4	23	
Initialization surface	surface OI	downscali	ng 2.5 km	25 ° N	12	5.00	Ð	my5	A Co	22	
Initialization time	12	UTC, 12 Sep 20	019		1 Aug	1	my s	-	ac Sto	in the	- Ce
Coupling model	IFS (1 h)] _{30°N}		peq	(a		~		
Lead time	39	h (10 min outp	put)	10°W	V 5°W 0)° 5°E	10°E	15°E	20°E	25°E	30°E
Physics		AROME									

Case study IOP8

- mean flow structure well captured
- 2 major challenges:
 - downvalley wind phase underestimated
 - persistent upvalley wind layer @ ~ 1000 m asl

Case study IOP8

- mean flow structure well captured
- 2 major challenges:
 - downvalley wind phase underestimated
 - persistent upvalley wind layer @ ~ 1000 m asl

- peak downvalley winds around 07 UTC (low-level jet)
- downvalley wind speeds underestimated by all AROME-Aut simulations
 - e.g., OP500: ~ 3 m/s, OP2500: ~ 4 m/s

Case study IOP8 – Challenge downvalley winds

© GeoSphere Austria

Me GeoSphere universität

Case study IOP8 – Challenge downvalley winds

• warm and dry bias over whole valley atmosphere

- quite well approximated over Alpine Foreland
- all simulation able to capture two-folded sign change $\Delta \theta$
- similar evolution during morning hours
- underestimated thermal forcing
 - reduced pressure difference to Alpine Foreland

Case study IOP8 – Challenge upvalley winds

- onset and maximum magnitude well captured
- lifting upvalley wind layer too weak
- persistent upvalley winds in layer around 1000 m asl
- similar but weaker in OP1000 and OP2500

Case study IOP8 – Challenge upvalley winds

- no thermal forcing for downvalley winds second night
 - valley atmosphere remains warmer; reddish colors in a)
 - pressure difference remains negative; blueish colors in b)

- difference to first night
 - relatively warmer valley BL
 - simulated cold air advection in Alpine Foreland

Case study IOP8 – impact Δx

Market GeoSphere Austria

- cross-valley vortex along VCS Inn Valley
 - subsiding northerly flow, updrafts south of Kolsass, return flow between 1250 to 1500 m asl
- investigated in e.g., Babic et al. (2021)

- OP500 able to capture small-scale feature
 - \rightarrow enough grid points
- gravity waves

Summary

Challenge 1: nocturnal downvalley wind phase

- insufficient thermal forcing
- forced channeling effects in central Inn Valley might be underestimated
- only slight improvements with smaller Δx

Challenge 2: persistent upvalley wind second night

- thermal forcing does not change sign
 - valley atmosphere warmer, slightly colder airmass Alpine Foreland
- forced channeling effects with NE directed flow towards Inn Valley entrance region
- not shown: sign of lateral boundary domain forcing in 0.5 km simulations (smaller model domain)

Influence higher horizontal grid resolution (i.e., 0.5 km)

- mean flow characteristics show only weak influence (i.e., flow structure)
- improvements for small-scale features
 - gravity waves, cross-valley vortex, local channeling effects, (more detailed topography)
- smaller biases and higher Hit rates in representation of surface near winds (AWS-stations)
- magnitudes, structure upvalley low-level jet better captured

Adler, B., and Coauthors, 2021: CROSSINN: A Field Experiment to Study the Three-Dimensional Flow Structure in the Inn Valley, Austria. Bull. Amer. Meteor. Soc., **102 (1)**, E38–E60, <u>https://doi.org/10.1175/bams-d-19-0283.1</u>. Gohm, A., and Coauthors, 2009: Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based Observations. Bound.-Layer Meteor., 131 (3), 441–463, <u>https://doi.org/10.1007/s10546-009-9371-9</u>. Meier, F., C. Wastl, F. Weidle, and C. Wittmann, 2021: Adapting the screening level diagnostics to improve AROME temperature forecasts in Alpine areas. Tech. rep., ACCORD NL 1. URL http://www.umr-cnrm.fr/accord/IMG/pdf/accord-nl1.pdf. Serafin, S., and Coauthors, 2018: Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9 (3), 102, https://doi.org/10.3390/atmos9030102. Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds – Observations and elementary thoughts. Meteor. Atmos. Phys., 36 (1), 264-286, https://doi.org/10.1007/BF01045154. Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteor. Atmos. Phys., 87 (4), 241–256, https://doi.org/10.1007/s00703-003-0056-5. Zängl, G., 2009: The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley. Meteor. Atmos. Phys., **105 (1-2)**, 37–53,

https://doi.org/10.1007/s00703-009-0030-y.

© GeoSphere Austria

ADDITIONAL FIGURES

15

Case study IOP8 – Meteorological conditions (ERA5)

- High-pressure region over central parts of Europe
- ridge axis gets pushed further south during IOP8

- 850 hPa:
 - split-up of wind field around Alps
 - shift W → NW directions in Alpine Foreland
 - calm inn valley entrance region

Case study IOP8 – afternoon hours

- warm bias vanished in valley BL
- valley atmosphere warmer than adjacent plain (2-4 K) below 1500 m asl
- thermal forcing better captured

 rapid increase upvalley winds until 15 UTC (~12 m/s - @750 m asl)

Case study IOP8 – Challenge upvalley winds

2019-09-14 00:00 UTC

a) OP500

3500

3000

(12500 ASL

OP50 eed 10 m s⁻¹ -----2019-09-14 00:00 UTC | @1000 m asl e OP2500 ==

2019-09-14 00:00 UTC | @1000 m asl

NE flow near Inn Valle entrance indicates forced channeling effects

Me GeoSphere universität

10 m s⁻¹ -----

Case study IOP8 – impact Δx (topography)

• large improvements due more realistic topography

Me GeoSphere universität

• Median bias to AWS-stations:

• OP500: 7 m

- OP1000: 30 m
- OP2500: 140 m
- improved valley representation
- summit stations too low

Case study IOP8 – impact Δx (time series Kolsass)

- diagnostic adaption T2m (Meier et al. 2021)
 - tuned towards 1 m during nighttime
 - warm bias reduction
 - overestimated cooling first night

- suppressed cold pool formation
 OP500 → upvalley winds
- 10 m wind:
 - underestimated downvalley winds i.e., OP2500

Case study IOP8 – impact Δx (10 m winds)

	A	ll stat	ions $(n_{ff} = $	62; n_{dd}	= 61)		
	\mathbf{ME}		RMS	E	Н]	
	$ff~[{\rm m~s^{-1}}]$	$dd \; [°]$	$ff~[{\rm m~s^{-1}}]$	$dd \; [°]$	ff_{EEA}	ff_{US-EPA}	dd
OP500	-0.36	56	1.23	73	58	90	62
OP1000	-0.42	57	1.16	71	55	89	59
OP2500	-0.44	64	1.23	78	48	90	52
	Inn	Valley	stations (n	$_{ff} = 9;$	$n_{dd} = 8)$		
	$ff~[{\rm m~s^{-1}}]$	$dd \; [°]$	$ff~[{\rm m~s^{-1}}]$	$dd \; [°]$	ff_{EEA}	ff_{US-EPA}	dd
OP500	0.06	55	1.05	74	67	100	50
OP1000	-0.20	52	0.95	69	67	100	87.5
OP2500	-0.52	72	1.12	87	44	100	25

- Higher grid resolution:
 - smaller station averaged ME (ff + dd)
 - improvements EEA benchmark (ff) and Hit rates dd (Oettl and Veratti 2021)
- largest disagreement for summit stations (sensitive to grid point selection)

Case study IOP8 – impact Δx (2 m temperature)

- diagnostic T2m adaption (Meier et al. 2021)
- all 77 AWS stations:
 - tendency warm bias
 - reduction RMSE (OP500: 2.0 K; OP2500: 2.31 K)

Austria universität

- Inn Valley stations (boxplot):
 - nighttime ME: 0.41 K (OP500); -1.02 K (OP2500)
 - daytime quite similar
 - less spread between stations observable with higher resolution (ME and RMSE)