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A B S T R A C T

Estimations of solar surface irradiance (SSI) derived from meteorological satellites are widely used by various
actors in the solar industry. However, even state-of-the-art empirical and physical SSI retrieval models exhibit
significant errors; the estimations provided by these models are thus traditionally corrected using ground-based
measurements of SSI as references. The literature is rich with such correction methods, often called adaptation
techniques. Most of the proposed models, however, are local or site-specific, i.e., they do not extrapolate the
correction in space and are only applicable to the location of the ground-based measurements.

In this work, we propose a novel global adaptation technique, that can extrapolate the correction in both
space and time. To that end, we leverage (1) a dense network of measurement stations across France, (2) a
relatively large number of predictors, and (3) a non-linear, sophisticated regression algorithm, the Extreme
Gradient Boosting. The model is applied to the HelioClim3 database; its performance is benchmarked against
raw HelioClim3 estimations, and alternative, simpler adaptation techniques.

Our analysis shows that this global model significantly improves satellite-derived SSI estimations from the
HelioClim3 database, even when the evaluation is carried out on measurement stations that were not part of
the training set of the algorithm. Our proposed model also outperforms all tested alternative global adaptation
techniques.

These results suggest that global adaptation techniques leveraging advanced machine learning and high
dimensionality have the potential to significantly improve satellite-derived SSI estimations, notably more than
traditional adaptation approaches. There is certainly room for improvement, but the development of such
techniques is a promising research topic.
1. Introduction

Accurate information about surface solar irradiance (SSI) is key in
many areas of the photovoltaic and solar industry but also in other
domains such as climatology, architecture, agriculture, etc. Early in
a project life cycle, it is critical for the design and feasibility studies
of a new solar power plant (da Graça et al., 2012); later on, in the
operational phase, it is required to monitor the production of the
plant (Marcos et al., 2011) and ameliorate energy market participa-
tion (Antonanzas et al., 2017; Alessandrini et al., 2014). On a larger
scale, it is also paramount to e.g. optimize unit commitment (Bran-
cucci Martinez-Anido et al., 2016) or manage regional transmission
networks (Saint-Drenan et al., 2017). Depending on the application,
different spatial resolutions and extents may be required; SSI may be
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needed in a single location or over a whole area and, in the latter
case, with a spatial resolution ranging between sub-kilometer and
countrywide scales. Furthermore, different time resolutions might be
necessary, ranging from seconds to years or even decades (Blanc et al.,
2017). Lastly, SSI may be required over a past period, for the present,
or a specific horizon in the future.

To answer these various requirements, different data sources may
be helpful. All come with strengths and weaknesses. Ground-based
instruments, such as pyranometers, are likely the most accurate (Badosa
et al., 2014). However, they only cover a very restricted area, and
because they are expensive to install and maintain, they rarely are in
place for long periods. On the other hand, Numerical weather models
cover large areas — global models even cover the whole earth. Since, in
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addition, they can be run retroactively, they can theoretically provide
SSI estimations without restriction in space and time. Unfortunately,
as they rely only sparsely on data – through data assimilation – and
because of various numerical approximations, even state-of-the-art nu-
merical models are often biased and can exhibit large errors (Perez
et al., 2013, 2010; Jimenez et al., 2016). Because of the computational
cost of running such models, they also have relatively coarse spatial and
temporal scales (Verbois et al., 2020). Satellite-derived solar irradiance
estimations rely on both observations – the satellite channels – and
models to estimate the SSI from these channels (Rigollier et al., 2002;
Tournadre et al., 2021). They can be seen as a compromise between
ground-based sensors and numerical weather models: like the latter,
they cover a large area and period, but their temporal and spatial
resolution is usually finer (Ineichen, 2014). In Europe, it is possible to
get SSI estimations at a resolution of 15 min and 3 km using e.g. He-
lioClim3 (Blanc et al., 2011b) or CAMS (Schroedter-Homscheidt et al.,
2016). In the United States, the National Solar Radiation Database
(NSRDB, Sengupta et al., 2014) provides SSI estimates with 30 min
and 4 km resolution. Satellite estimations of SSI are nonetheless less
accurate than ground-based measurements, and, like numerical models,
often exhibit systematic errors (Qu et al., 2014; Ineichen, 2014). The
inaccuracy of satellite estimations is partially due to modeling errors
– similar to numerical weather models – and a lack of temporal and
spatial resolutions, constrained by satellite instruments.

To leverage both data sources simultaneously, it is common to
correct long-term satellite-derived estimations using short-term ground-
based measurements (Polo et al., 2016, 2020). This approach is often
referred to as adaptation technique. In the past few years, many models
ave been implemented and tested. For post-hoc correction – typically
sed for local resource assessment – quantile mapping (QM) is perhaps
he most popular approach. QM corrects the Cumulative Distribution
unction (CDF) of the long-term satellite estimations to match that of
he short-term ground measurements. It is very efficient at removing
ias and adjusting other higher-order moments of the distributions
e.g. standard deviation) (Yezeguelian et al., 2021). However, QM does
ot concern itself with the co-occurrence of estimations and measure-
ents. It is thus improper for applications where the SSI estimations
ust not only be adjusted in terms of their distribution but also

emporally accurate (Polo et al., 2016). In that context, regression-
ased adaptation techniques – sometimes referred to as Model Output
tatistics (MOS) – are more relevant. The goal of MOS is to establish
relationship between the satellite estimated SSI – and possibly more

bservable predictors – and the measured SSI. In the literature, many
egression models were tested. When SSI estimated by the satellite is
he single predictor, simple algorithms show promising results: Davy
t al. (2016) successfully implemented a simple generalized additive
odel, Mazorra Aguiar et al. (2019) combined a simple linear regres-

ion with k-mean clustering, and Vernay et al. (2013) used a simple
inear correction in the Fourier domain. Several works proposed to use
ore complex algorithms, usually combined with a larger predictor

et, including several components of SSI, solar geometry information,
nd sometimes basic weather data. Various classical machine learning
lgorithms were tested: neural networks (Şahin et al., 2014; Cornejo-
ueno et al., 2019), Random Forest (Babar et al., 2020), support vector
achine, and Gaussian process (Cornejo-Bueno et al., 2019).

In most of these studies, the adaptation technique is local, i.e. it
nly corrects satellite estimations for locations where ground-based
easurements are available. This is sufficient in some use cases, such as

he sizing of a new photovoltaic power plant. However, for other appli-
ations, SSI estimations are required over an extended spatial coverage.
or example, transmission system operators (TSO) need that spatially
istributed information to estimate or forecast the power output of
whole region (Saint-Drenan et al., 2017). Even forecasting models

ocusing on a single location sometimes utilize irradiance data from
he surroundings and therefore benefit from improved SSI estimations
176

ver multiple pixels (Sperati et al., 2017). Adaptation techniques that a
can extrapolate in space are sometimes referred to as regional or global
adaptation techniques. Even though most of the satellite adaptation
literature focuses on local models, few papers developed global alter-
natives. Davy et al. (2016) propose a global MOS for Australia: they
train generalized additive models for each location with ground mea-
surements and use a distance-weighted interpolation of these models
for every other location in Australia. Babar et al. (2020) implement a
Random Forest for the same purpose, but in Scandinavia; to help their
model generalize spatially, they do not use interpolation, but directly
give the latitude and longitude as input to their model.

In this work, we aim to contribute to the global adaptation tech-
nique literature by developing a novel MOS model and proposing
a comprehensive performance analysis framework. Furthermore, we
implement several benchmark models to challenge the main design
choices of our model. Our proposed MOS model is somehow akin to
that of Babar et al. (2020) in that it uses a single regression model and
does not rely on any interpolation routine. However, our approach to
predictor selection, particularly our consideration of past time steps, is
fundamentally different. We intend to provide a large-enough predictor
set so that the correction model can adapt its correction to a specific
temporal context.

The study is conducted using a large network of ground-based
instruments — more than 200 measurement stations, spread across
France for up to 9 years. While our results are a priori specific to mid-
latitudes, they demonstrate that our proposed approach is scalable to a
country.

Our method is exposed in Section 2: we describe the data used
and the associated quality checks (Section 2.1), detail the MOS models
implemented (Section 2.2), and discuss our experimental setup (Sec-
tion 2.3). The results are presented in Section 3 and divided into
three parts: first, a multi-model comparison is conducted (Section 3.1),
then we perform a condition-dependent analysis (Section 3.2), and
finally, we evaluate the plausibility of our estimations (Section 3.3).
Conclusions are given in Section 4, where we also discuss future
perspectives.

2. Method

2.1. Data

2.1.1. Ground stations
This work uses ground-based irradiance measurements from 286

weather stations operated by Meteo France. The stations are equipped
with Kipp&Zonen pyranometers1 and measure 1-min Global Horizontal
Irradiance (GHI). In this work, only hourly averages of GHI are used. As
illustrated in Fig. 1, the stations are spread across metropolitan France
relatively homogeneously. The data span 9 years, between 2010 and
2019, but not all stations were operational during the whole period.

2.1.2. Quality check
A thorough quality check (QC) procedure is applied to the ground

measurements. First, the automated checks recommended by Espinar
et al. (2013) are applied. As we only have access to GHI and because
we take a conservative approach, they are reduced to the extremely rare
limits (ERL) equation:

−2 < 𝐺𝐻𝐼 < 1.2𝐼𝑠𝑐𝑐𝑜𝑠1.2(𝜃𝑧) + 50 (in W m−2)

here 𝐼𝑠𝑐 is the solar constant adjusted for Earth–Sun distance, and 𝜃𝑧
he mean hourly solar zenith angle.

We then use a digital model of the horizon (Blanc et al., 2011a)
o exclude all points below the horizon. Points with a mean hourly
levation angle below 10◦ are also discarded systematically.

1 Several models are used depending on the station: CM11, CM6B, CMP6,
MP10, and CMP11. The details of the instrument at each station can be found
t: https://donneespubliques.meteofrance.fr/?fond=contenu&id_contenu=37.

https://donneespubliques.meteofrance.fr/?fond=contenu&id_contenu=37
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Fig. 1. Location of Meteo France stations used in this study, divided into training and test sets, as described in Section 2.3.2.
We subsequently conduct a visual check to detect possible calibra-
tion errors. The clear sky index 𝑘𝑐 is computed as the ratio of the
measured irradiance and the clear sky irradiance – estimated by the
McClear model (Lefèvre et al., 2013). For each station, two time series
are plotted:

1. the station 𝑘𝑐 ;
2. the ratio 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of the station 𝑘𝑐 to the 𝑘𝑐 averaged over the

neighboring stations (within a 50 km radius).

If we see a consistent drop in the maximal 𝑘𝑐 and 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 for several
months, the period is marked as failing QC. Fig. 2 illustrates the
process.

Finally, a second visual QC is applied to detect possible additional
shadowing, illustrated for one station in Fig. 3. For each station:

1. we select all instants 𝑇𝑐𝑙𝑒𝑎𝑟 for which HC3 clear sky index 𝑘𝐻𝐶3
𝑐

is greater or equal to 0.75: 𝑇𝑐𝑙𝑒𝑎𝑟 = {𝑡 such that 𝑘𝐻𝐶3
𝑐 (𝑡) ≥ 0.75};

2. we consider the corresponding ground-measured clear sky in-
dex 𝑘𝑐 in the solar elevation — solar azimuth (𝛼, 𝜙) plane:
{𝑘𝑐 (𝑡, 𝛼, 𝜃) for 𝑡 ∈ 𝑇𝑐𝑙𝑒𝑎𝑟}.

As there are several years of data for each station and because the sun
is in the exact same position twice a year, several 𝑘𝑐 values fall in the
same (𝛼, 𝜃) point in that plane.

3. For each given (𝛼, 𝜙) point, we select the highest value,
𝑘𝑚𝑎𝑥𝑐 (𝛼, 𝜃) = 𝑚𝑎𝑥𝑡{𝑘𝑐 (𝑡, 𝛼, 𝜃) for 𝑡 ∈ 𝑇𝑐𝑙𝑒𝑎𝑟}, and display it in on
an azimuth/elevation graph.

If there is no object in a given elevation/azimuth line of sight, we
expect 𝑘𝑚𝑎𝑥𝑐 to be close to 1 - at a minimum greater than 0.75. On the
contrary, a low 𝑘𝑚𝑎𝑥𝑐 value is a strong indication that there might be
a shadowing object in that direction. In particular, we are looking for
low 𝑘𝑚𝑎𝑥𝑐 region in the azimuth/elevation graph that originated from
the ground (𝛼 = 0).

As the data has a temporal resolution of one hour, we see a discon-
177

tinuous pattern.
4. The image is thus convoluted with a median filter of size (10◦ ×
10◦), 𝐹𝑚𝑒𝑑𝑖𝑎𝑛, to obtain a continuous picture.

The shadowed area can then be identified manually (a pole and some
trees are recognizable in Fig. 3). All the time-steps falling in the
shadowed area are flagged as falling QC.

Note that shadows caused by the topography surrounding a station
(mountain for example) were already automatically detected thanks to
the digital model of the horizon.

Summary. Out of 286 stations, 46 stations failed QC for more than
40% of their time-steps and were totally removed from the data-set.
The distribution of days passing QC for each station is illustrated in
Fig. 4.

2.1.3. HelioClim3
Satellite-based irradiance estimations are taken from the Helio-

Clim3 version 5 database (HC3, Espinar et al., 2012). HC3 uses the
Heliosat2 method (Rigollier et al., 2004) to derive surface irradiance
from MeteoSat second generation (MSG) data (Rigollier et al., 2002).
Since version 5, HC3 also relies on CAMS aerosol data (Schroedter-
Homscheidt et al., 2016) and the McClear clear-sky model (Lefèvre
et al., 2013) to estimate clear-sky irradiance.

HC3 estimations natively come with a 15 min time resolution and
the same spatial resolution as MSG, 3 km at the nadir. Because MSG
observation time is not the same for each pixel of its sensor, interpo-
lation is done so that all HC3 SSI estimations are given for the same
time-step.

In this work, we use 1-hour averages to match the time resolution
of the measurements (see Section 2.1.1) and a regular projection above
France, with a spatial resolution of 0.04 degrees.

Note that for HC3 as for ground data, the time intervals are right-
labeled: hourly SSI at e.g. 11:00 refers to the average SSI between 10:01

and 11:00.
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Fig. 2. Example of visual QC to find calibration errors based on the station 𝑘𝑐 and 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠. On the left plots (a, c), we see concurrent drops in 𝑘𝑐 and 𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (in red) - they
are flagged as not passing QC. The data on the right plots (b, d) passes this QC test. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 3. Example of visual QC to detect shadowing. Hourly 𝑘𝑚𝑎𝑥𝑐 are shown on the left plot, and after passing a median filter on the right plot. Shadows from what we suspect are
a pole and neighboring trees are clearly visible. The horizon from the digital model of the horizon is also shown in both plots by a dark line. All time-steps for which the station
is shaded were flagged as failing QC.
2.2. Adaptation techniques

2.2.1. XGB_global: our proposed model
Our proposed model, XGB_global, relies on a non-linear regression

algorithm popular in Kaggle competitions (Kaggle, 2022): Extreme
Gradient Boosting (XGB) (Chen and Guestrin, 2016). XGB is an im-
proved implementation of Tree Gradient Boosting (GB), known to
handle relatively high dimensionality well, and based on regression
trees. At training, regression tree partitions the predictor space into a
set of complementary rectangles; the target variable is then estimated
by the mean response in each partition. Regressions trees have low
bias but high variance. XGB is designed to take advantage of this
feature: the algorithm combines a large number of regression trees,
that are built to be as uncorrelated as possible with each other. This
reduces the variance while keeping the low bias. XGB algorithm has
several so-called hyper-parameters that are not learned during training
but must be tuned to the problem at hand. These hyper-parameters
either control how each individual tree is built or how the different
trees are combined:
178
1. The maximum depth of each tree can be specified. A small
maximum depth reduces the size of trees; it can thus be seen
as a regularization term.

2. The depth of each tree can also be constrained using the mini-
mum number of samples in each leave of each tree.

3. The total number of trees used must be set by the user. A higher
number of trees implies a more complex algorithm (and thus
more risk of overfitting).

4. To reduce the correlation between two regression trees, it is
possible to train each tree with a subset of the data. The ratio of
train data used to fit each tree is a hyper-parameter.

5. Finally, the contribution of each tree is constrained by a learning
rate, which must also be set by the user.

The hyper-parameters selection process is further described in Sec-
tion 2.3.3. For more details on regression trees and gradient boosting,
the reader may refer to Hastie et al. (2009); Section 4.2.2.6 of Verbois
(2019) may provide a solar forecasting perspective.

To give the algorithm as much context as possible, we use a set
of 18 predictors. From HC3 and McClear, we use the 5 previous time
steps estimations of hourly GHI and hourly 𝑘𝑐 , as well as the last clear-
sky irradiance (CSI) estimation. The sun elevation and azimuth angles
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Fig. 4. Quality check of stations data: number of hours per day passing the QC. The set of stations from which 50 training stations are randomly drawn (see Section 2.3.2) is
indicated by a black dashed rectangle.
Fig. 5. Overview of the XGB_global model. SolPos contains solar elevation and azimuth angle, as well as the time of day and day of the year ; location contains latitude, longitude
and altitude.
— computed using the sg2 library (Blanc and Wald, 2012), the day
of the year and the time of day are also added. Finally, the latitude,
longitude, and altitude of the HC3 pixel are used as extra predictors.
This predictor set is notably redundant: the 𝑘𝑐 , GHI, and CSI values are
strongly correlated; solar elevation, azimuth, time of day, and day of
year are not independent either. We thus rely on the ability of XGB to
handle correlated inputs and to leverage weak predictors (Hastie et al.,
2009). The model is summarized in Fig. 5, and the predictors are given
in Table 1.

It should be emphasized that this model can operate in real time.
Indeed, while the training of the model is time-consuming, applying
the already trained model to new data is very fast.2 Every time a new

2 Training a single XGB model on our training set takes between one and
three hours on a single processor, depending on the hyper-parameters. Because
we use grid-search and cross-validation to tune the hyper-parameters, several
179
HC3 map is available, all the data necessary to correct this map are
available and XGB_global can thus be obtained immediately.

2.2.2. Reference models
The primary objective of an adaptation technique is to improve HC3

estimations. We will thus thoroughly compare the performances and
properties of XGB_global and HC3. However, our proposed XGB_global
model is fairly complicated; we, therefore, implement several alterna-
tive adaptation models to justify our design.

BRR_global: a linear model. To isolate the effect of the XGB_global re-
gression algorithm and of its non-linearity in particular, we implement

days of computation were necessary for the whole cross-validation process. In
contrast, applying the trained model to one HC3 time-step and for all pixels
in France (110,000 pixels) only takes a few seconds on the same processor.
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an alternative global model based on linear regression, BRR_global. We
choose a Bayesian Ridge Regression (BRR, MacKay, 1992), because
(1) it implements both L1 and L2 regularization, which is useful to
best benefit from multiple predictors and because (2) the L1 and L2
coefficients are determined with a Bayesian framework, which does not
require any cross-validation which is advantageous considering the size
of our data-set.

We emphasize that BRR_global uses the same predictors as
XGB_global; it only differs in the choice of the regression algorithm.

XGB_interpol: a local model with interpolation. Another specificity of
XGB_global is that a single model is needed for all of France. That is
because the spatial variations of the required corrections are directly
handled by the XGB algorithm, which gets the location (latitude, lon-
gitude, and altitude) as predictors. In contrast, other approaches in the
literature train separate adaptation models for each training station
and interpolate their predictions for test stations. We thus implement
a model that relies on interpolation from training to test stations,
XGB_interpol:

1. We first implement local adaptation models based on the XGB
algorithm for each training station: XGB𝑖

local, where 𝑖 ∈ {Training
Stations} indicates the station and 𝑥𝑖 = (𝐿𝑎𝑡𝑖, 𝐿𝑜𝑛𝑖) its location.

2. A global model, XGB_interpol is built to correct HC3 estimations
in any 𝑥𝑗 , where 𝑗 ∈ {test stations} by interpolating 𝑋𝐺𝐵𝑖

𝑙𝑜𝑐𝑎𝑙
corrections for 𝑥𝑖 in the neighborhood of 𝑥𝑗 . We chose to use
the 4 nearest training stations and modulate their contribution
by the squared inverse of the geodesic distance 𝑑(𝑥𝑖, 𝑥𝑗 ) between
𝑥𝑖 and 𝑥𝑗 :

XGB_interpol(𝑥𝑗 ) =
1

∑

𝑁(𝑥𝑗 )
1

𝑑(𝑥𝑖 ,𝑥𝑗 )2

∑

𝑁(𝑥𝑗 )

1
𝑑(𝑥𝑖, 𝑥𝑗 )2

XGB𝑖
local(𝑥𝑗 );

(1)

where 𝑁(𝑥𝑗 ) is the set of 4 nearest neighbors.

XGB_station: a local model without spatial interpolation. To further ex-
plore the implication of using a single global XGB regressor in
XGB_global, we also evaluate the performance of 𝑋𝐺𝐵𝑗

𝑙𝑜𝑐𝑎𝑙 for j in test
stations. It should be noted that this model, named XGB_station, is a
local model; it has access to more information than the other MOS
models tested in this paper and only extrapolates the correction in time,
not in space. XGB_station is thus not a fair challenger but constitutes
an insightful reference.

XGB_spatial: a spatial model without temporal interpolation. Furthermore,
we implement a model that does not extrapolate in time: XGB_spatial.
The configuration of this model is identical to that of XGB_global,
but while a strict spatio-temporal separation between training and test
sets is enforced for XGB_global, only spatial separation is imposed on
XGB_spatial (See Section 2.3.3 for more details on the design of training
and test sets.). XGB_spatial, similarly to XGB_station, has thus access to
more information than the other MOS models tested in this paper; it
only extrapolates in space, not in time.

SLR_global: a simple global model. Finally, we implement a simple global
odel based on a simple linear regression between HC3 𝑘𝑐 and mea-

ured 𝑘𝑐 : SLR_global. The model, summarized in Fig. 6, serves as
eference and constitutes a lower bound in terms of complexity and
erformance.

.2.3. Summary
The 6 correction models implemented in this work are listed in Ta-

le 1, with their respective predictors. SLR_global, BRR_global,
GB_global, and XGB_interpol are global models, while XGB_station is
local model and XGB_spatial a spatial model.
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i

2.3. Experimental setup

2.3.1. Metrics
The root mean square error, RMSE, is arguably the most popular

metric for the forecasting and estimation of solar irradiance. Given the
error 𝝐 such as 𝜖𝑡 = 𝐼𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡−𝐼𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , where 𝐼𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed
irradiance at time 𝑡, 𝐼𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 the forecasted irradiance, the RMSE is
defined as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝐼𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐼𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)2; (2)

RMSE measures both the precision and accuracy of the estimation.
To separate these two aspects of the error, RMSE can be decomposed
into the Mean Bias Error, MBE, and the standard deviation of the error,
SDE3:

𝑅𝑀𝑆𝐸2 = 𝑀𝐵𝐸2 + 𝑆𝐷𝐸2 (3)

where:

𝑀𝐵𝐸 = 1
𝑛

𝑛
∑

𝑡=1
𝐼𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐼𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . (4)

and

𝑆𝐷𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1
(𝐼𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐼𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −𝑀𝐵𝐸)2. (5)

BE measures the precision – or bias – of the estimations, while SDE
easures their accuracy.

To compare two models A and B in terms of SDE or RMSE, it is
ometimes useful to define the change in SDE or RMSE, 𝛥𝑆𝐷𝐸𝐵

𝐴 and
𝑅𝑀𝑆𝐸𝐵

𝐴 (Verbois et al., 2022):

𝑆𝐷𝐸𝐵
𝐴 = 𝑆𝐷𝐸𝐵 − 𝑆𝐷𝐸𝐴. (6)

𝑅𝑀𝑆𝐸𝐵
𝐴 = 𝑅𝑀𝑆𝐸𝐵 − 𝑅𝑀𝑆𝐸𝐴. (7)

ecause MBE can be negative, we use the absolute change in MBE,
|𝑀𝐵𝐸|

𝐵
𝐴:

|𝑀𝐵𝐸|

𝐵
𝐴 = |𝑀𝐵𝐸|𝐵 − |𝑀𝐵𝐸|𝐴. (8)

𝑆𝐷𝐸𝐵
𝐴 (𝛥|𝑀𝐵𝐸|

𝐵
𝐴 and 𝛥𝑅𝑀𝑆𝐸𝐵

𝐴 resp.) is positive when model A
utperforms model B in terms of SDE (MBE and RMSE resp.).

When two models A and B have similar performance in terms of a
etric , for example 𝐴 ≲ 𝐵 , it is useful to conduct statistical

esting. Following Verbois et al. (2022), we use bootstrapping to reject
he null hypothesis 𝐴 = 𝐵 . Here, however, we use blockwise
ootstrap (Kunsch, 1989) to account for the dynamics of the signal;
e use days as block.

.3.2. Train-test split
How one splits the data into a training and testing set is critical. The

plit must indeed ensure that we test the ability of our global models
SLR_global, BRR_global, XGB_global, and XGB_interpol) to generalize
n time and space. We, therefore, reserve 50 stations and 3 years for
esting (2017–2019). Some of the data is thus discarded: (1) these 50
tations’ data for years before 2017 and (2) the other stations’ data for
he years 2017 to 2019. The process is illustrated in Fig. 7(a)

For the local model, XGB_station, we use a different setup: for each
f the 50 test stations, the years 2010 to 2016 are used for training,
nd the years 2017 to 2019 for testing, as illustrated in Fig. 7(b).

Finally, for the spatial model, XGB_spatial, the years 2017 to 2019
re used for both testing and training, as illustrated in Fig. 7(c)

Testing and training stations must fulfill several requirements:

3 This decomposition can be easily derived if one remembers that RMSE is
n estimate of

(

E[𝝐2]
)1∕2, SDE of

(

E[(𝝐 − E[𝝐])2]
)1∕2 and MBE of E[𝝐], where 𝝐
s the error.
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Fig. 6. Overview of the SLR_global model.
Table 1
Predictors used by each model. When passed time steps are used for a variable, the number of time steps used is indicated in brackets.
Predictors ↓ \ Models → SLR_global BRR_global XGB_global XGB_interpol XGB_station XGB_spatial

ghi from HC3 X (5) X (5) X (5) X (5) X (5)
𝑘𝑐 from HC3 X X (5) X (5) X (5) X (5) X (5)
CSI from HC3 X X X X X
solar elevation angle X X X X X
solar azimuth angle X X X X X
time of day X X X X X
day of year X X X X X
latitude X X X
longitude X X X
altitude X X X
Table 2
Hyper-parameters tuned for XGB models, with the range of values tested during cross-validation. The hyper-parameters selected for XGB_global
by the cross-validation procedure are shown in bold.
Parameter name Values tested Description

max_depth [5, 10, 15] Maximum depth of each regression tree
min_child_weight [1, 5, 10] Minimum number of sample(s) in each leaf
subsample [.3, .5, 1] Ratio of train data randomly picked to train each tree
learning_rate [.05, .1, .5] Weight of the contribution of each regression tree
n_estimators [300, 500] Total number of regression trees used
1. Each test station must have enough data during the testing
period so that station-wise performance analysis is relevant.

2. Each sub-model (i.e. developed for each individual station) used
by the local model, XGB_station, must have enough training
data.

3. Each sub-model (i.e. developed for each individual station)
used by the global interpolated model, XGB_interpol, must have
enough training data.

To guarantee 1., we require that each test station passes QC for more
than 30% of the hours over the testing period. To guarantee 2., since
XGB_station sub-models are trained on test stations (see Fig. 7(b)),
we require that a test station passes QC for more than 30% of the
hours over the training period. To guarantee 3., since XGB_interpol sub-
models are trained on training stations, we require that each training
station passes QC for more than 30% of the hours over the training
period. The 50 test stations are chosen randomly among the stations
fulfilling requirements 1 and 2. All the remaining stations fulfilling
requirement 3 are taken as training stations.

Considering that nighttime data are flagged as failing QC (see
Section 2.1.2), the threshold of 30% corresponds to an average of more
than 2628 h of available daylight data, i.e. it can be considered a rather
strict criterion.4

Of the 286 original measurement stations, 46 are removed by QC
(see Section 2.1.2), 50 are reserved for testing and, out of the 190

4 Since Metropolitan France latitude is between 42◦ and 51◦, hours with a
mean hourly elevation angle above 10◦ constitute between 39% and 43% of
all hours.
181
remaining, 173 pass requirement 3. and are used as training stations.
The locations of test and training stations are shown in Fig. 1 - we see
that train and test stations are evenly spread across France.

It should be emphasized that while the training data may be dif-
ferent for different models, the test performances are evaluated on the
exact same data set for all models. As discussed in Verbois et al. (2022),
this is paramount for a proper benchmark.

2.3.3. Cross-validation
XGB_global, XGB_interpol and XGB_station have several hyper-

parameters that need to be optimized, detailed in Table 2. This opti-
mization must be done on the training set, using here cross-validation
techniques (Hastie et al., 2009). In this work, the training stations are
randomly grouped into 4 validation sets, each containing data from 43
or 44 stations for 2010–2017. These 4 sets are used to conduct 4-fold
cross-validation.

BRR_global has two hyper-parameters (the weights of the L1 and L2
regularization terms), but uses a Bayesian framework to optimize them
and thus does not require any validation. SLR_global does not have any
hyper-parameters.

3. Results

This section is organized into three parts. In Section 3.1, we com-
pare the overall and station-wise performance of our proposed MOS
model, XGB_global, with that of HC3 and of the 5 other MOS models. In
Section 3.2, we go further and perform a condition-dependent analysis
of XGB_global and HC3 performances. Finally, in Section 3.3, we go
beyond the MBE and SDE metrics and study the effect of our MOS
model on the plausibility of the GHI estimations.
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Fig. 7. Illustration of the training/testing split setup, for the global models (XGB_global, BRR_global, SLR_global and XGB_interpol) in (a), for the local model (XGB_station) in (b)
and for the spatial model (XGB_spatial) in (c).
3.1. Multi-model comparison

3.1.1. Overall performances
We first look at the overall performances, computed over the 50 test

stations and 2 test years. Table 3 shows the overall MBE of HC3 and
the 6 MOS models. HC3 has a bias of 13.2 W m−2 and all MOS models
have similar MBEs, between −2 and 2 W m−2, which is a significant
reduction of HC3 bias. SLR_global MBE is statistically significantly
lower than that of all other models, but the difference with other MOS
models is likely negligible in practice as they are comparable to the
measurements noise.5

5 It is difficult to quantify the measurement noise precisely, because not
all stations use the same pyranometer model and because pyranometers
expected uncertainties are typically condition-dependent (Habte et al., 2016).
Nonetheless, if we consider for example the Kipp&Zonen CMP11 – installed in
several of the stations considered in this study – Strobel et al. (2009) estimate
182
Table 4 shows the overall SDE of HC3 and the 6 MOS models. The
improvements over HC3 are not as important as for MBE, but there is a
stronger differentiation between MOS models. In fact, the SDE seems to
decrease with the increasing complexity of the algorithm used. With an
SDE of 64.8 W m−2, SLR_global, the simplest model, slightly deteriorate
HC3 SDE — 64.6 W m−2 ; BRR_global performs somewhat better with
a reduction of 3% of HC3 SDE; XGB_global, the most sophisticated
model, reaches an overall SDE of 59.8 W m−2, 8% less than HC3. The
local model, XGB_station, and the spatial model, XGB_spatial, have an
even lower SDE. This was expected since they benefit from additional
information; the difference with XGB_global is, nonetheless, small.

a higher bound of ±3.10%±1.10 W m−2 for the combined standard uncertainty.
With irradiance values above 100 W m−2, that is larger than the MOS MBEs.
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Table 3
MBE for HC3 and MOS models, computed once for all test stations and test years. For each pair of models 𝑀1, 𝑀2, the statistical significance of 𝑀𝐵𝐸1≠𝑀𝐵𝐸2 is tested; the
resulting 𝑝-values ((𝑀𝐵𝐸1 = 𝑀𝐵𝐸2)) are shown in the table. MBE statistically significantly non null are indicated by a *.

MBE HC3
SL

R_gl
ob

al

BR
R_gl

ob
al

XGB_g
lob

al

XGB_i
nte

rpo
l

XGB_s
tat

ion

XGB_s
pa

tia
l

W m−2 𝑝-values

HC3 13.2* NA <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SLR_global 1.5* <0.01 NA <0.01 <0.01 <0.01 <0.01 <0.01
BRR_global 1.9* <0.01 <0.01 NA 0.02 <0.01 0.03 <0.01
XGB_global 2.0* <0.01 <0.01 0.02 NA 0.07 0.25 <0.01
XGB_interpol 2.1* <0.01 <0.01 <0.01 0.07 NA 0.32 <0.01
XGB_station 1.9* <0.01 <0.01 0.03 0.25 0.32 NA <0.01
XGB_spatial −2.1* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NA
able 4
DE for HC3 and MOS models, computed once for all test stations and test years. For each pair of models 𝑀1, 𝑀2, the statistical significance of 𝑆𝐷𝐸1≠𝑆𝐷𝐸2 is tested; the
esulting 𝑝-values ((𝑆𝐷𝐸1 = 𝑆𝐷𝐸2)) are shown in the table.

SDE W m−2 𝑝-values

HC3 SL
R_gl

ob
al

BR
R_gl

ob
al

XGB_g
lob

al

XGB_i
nte

rpo
l

XGB_s
tat

ion

XGB_s
pa

tia
l

HC3 64.6 NA <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SLR_global 64.8 <0.01 NA <0.01 <0.01 <0.01 <0.01 <0.01
BRR_global 62.6 <0.01 <0.01 NA <0.01 <0.01 <0.01 <0.01
XGB_global 59.8 <0.01 <0.01 <0.01 NA <0.01 <0.01 <0.01
XGB_interpol 61.7 <0.01 <0.01 <0.01 <0.01 NA <0.01 <0.01
XGB_station 59.0 <0.01 <0.01 <0.01 <0.01 <0.01 NA 0.01
XGB_spatial 59.1 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 NA
m
q
h
v
i
t
s
i
i
a
g
t

3

o
d
s
a
v
𝛥
t
a

g
p
l
6
c
s
h
o
i
i

.1.2. Station-wise performances
To better discriminate between the models and gain a deeper under-

tanding of their (relative) performances, we break down the MBE and
DE per station. Fig. 8 shows the distribution of these metrics across
he 50 test stations, using boxplots. We first notice that even though
he overall MBE are ≤2.1 W m−2 (Table 3) for all MOS models, a rela-
ively large bias remains for some stations. Furthermore, even though
GB_interpol has almost the same MBE as XGB_global on average, it

s significantly higher for 3 stations. Lastly, the superiority in terms of
ias reduction of the local model, XGB_station, is clearer: not only the
ean MBE is the lowest (Table 3), but the distribution of MBE is also
ore tightly wrapped around 0.

Generally, however, the cross-model comparison is not easy in
ig. 8 because the cross-station variations of performances are more
mportant than the cross-model variations. To properly evaluate the
enefit of using XGB_global, we need to compare its MBE and SDE
ith every other model, independently for each station. To that end,

he distributions of 𝛥|𝑀𝐵𝐸|

𝑚𝑜𝑑𝑒𝑙
XGB_global and 𝛥𝑆𝐷𝐸𝑚𝑜𝑑𝑒𝑙

XGB_global across test
tations are shown in Fig. 9, for 𝑚𝑜𝑑𝑒𝑙 ∈{HC3, SLR_global, BRR_global,
GB_interpol, XGB_station, XGB_spatial}. XGB_global decreases HC3
BE in 80% of the stations. In addition, while the reduction of MBE is

s good as 47 W m−2 in one location, the deterioration never exceeds
3 W m−2, as can be seen from the extreme points of the boxplots. In
erms of SDE, the improvement is even more systematic, as HC3 sees
ts SDE increased by XGB_global in only one station (or 2%) and by less
han 2 W m−2.

XGB_global also shows improved performance over other global
OS models. Its MBE is indeed lower than that of SLR_global and
RR_global in more than 60% of the stations. However, it only has a

ower MBE than XGB_interpol in 50% of the stations. Its superiority in
erms of SDE is more significant as it outperforms the two linear models
SLR and BRR) in all stations but one and does better than XGB_interpol
n 90% of them.

The comparison with the local MOS model, XGB_station, and the
patial model, XGB_spatial, is also insightful. Firstly, although the local
odel has a lower MBE and SDE on average (Tables 3 and 4), it has
higher SDE in 56% of the stations. This suggests that the global
183

i

odel is more robust than XGB_station, even though it does not perform
uite as well on average. XGB_spatial, on the other hand, while it
as only a slightly lower SDE than XGB_global overall (59.1 W m−2

s 59.8 W m−2), has a lower SDE in 84% of the test stations. The
mprovement, albeit small, is thus nearly systematic. The fact that
he improvement of XGB_spatial over XGB_global is significantly more
ystematic than that of XGB_station over XGB_global suggests that,
n the current setup, interpolation in time is more challenging than
nterpolation in space. One must keep in mind, however, that training
nd test stations are tightly interlaced (see Fig. 1); had we use a geo-
raphical split that enforce for example a minimum distance between
raining and test stations, the conclusion may have been different.

.1.3. Monthly station-wise performances
We can further analyze the systematicity of XGB_global’s superiority

ver the other MOS models and HC3. To this end, we look at the
istribution of the monthly station-wise performances. Similar to the
tation-wise analysis (Figs. 8 and 9), we are interested in the station
nd month-wise difference in SDE and MBE, rather than in absolute
alues. Fig. 10 thus shows the distribution of 𝛥|𝑀𝐵𝐸|

𝑚𝑜𝑑𝑒𝑙
XGB_global and

𝑆𝐷𝐸𝑚𝑜𝑑𝑒𝑙
XGB_global for each month and station. Each sample used to build

he boxplots in Fig. 10(b) is one value of 𝛥𝑆𝐷𝐸 for a given month in
given station.

These results confirm that XGB_global outperforms HC3 and other
lobal MOS models in most cases, especially in terms of SDE. In
articular, it improves HC3 SDE in 93.5% of months and stations. The
ocal MOS model, XGB_stations, has a lower MBE than XGB_global in
1% of the cases, but a lower SDE in only 48.7% of the cases. This
onfirms that XGB_global is slightly more robust than XGB_station. The
patial model, XGB_local, on the other hand, has a lower MBE nearly
alf the time (49.3% of the cases), but a lower SDE in more than 70%
f the cases. This confirms the conclusions drawn from Section 3.1.2:
n the current setup, interpolation in time is more challenging than
nterpolation in space.

At this point in the analysis, we are confident that XGB_global
s a better choice than other tested global MOS models, at least in
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Fig. 8. Boxplots of stations’ MBE and SDE. Each sample used to build a given boxplot is the MBE (resp. SDE) for a given model in a single test station during the test period.
he whiskers of the boxplot indicate the 5 and 95% percentiles; the remaining samples are represented by points outside the box and its whiskers.
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erms of MBE and SDE. Admittedly, the difference with other models –
GB_interpol in particular – is relatively small, but it is systematic.
urthermore, XGB_global compares well with two sophisticated local
nd spatial MOS models, XGB_station and XGB_global, even though
hey have additional information (in space or time, respectively).

In the rest of this paper, we will focus on the comparison between
GB_global and HC3, to understand whether the solar irradiance es-

imations of our proposed MOS model can be substituted to those of
C3.

.2. Condition-dependent analysis

In this section, we propose to look in more detail into the perfor-
ances of XGB_global and HC3 to better understand the added value

f the former. We first study the dependence of their performances on
he sky conditions, and then verify if their error has a daily or seasonal
184

ependence. [
3.2.1. Dependence on the sky conditions
We first look at the performances of HC3 and XGB_global as a

function of the sky conditions, for which we use the clear-sky index
𝑘𝑐 as a proxy. Figs. 11(a) and 11(b) show the distribution of MBEHC3,

BEXGB_global and 𝛥|𝑀𝐵𝐸|

HC3
XGB_global as a function of observed 𝑘𝑐 . HC3

enerally overestimates the solar irradiance (i.e. MBEHC3 > 0) for
𝑐 ≤ 0.8 – in particular for 𝑘𝑐 ≤ 0.2 – and has a slightly negative bias
MBEHC3 ⪅ 0) for 𝑘𝑐 > 0.8. Because 𝑘𝑐 is bounded by 0 and 1, we expect
ome underestimation for the highest 𝑘𝑐 class and overestimation for
he lowest 𝑘𝑐 class.6 The positive bias for 0.2 ≤ 𝑘𝑐 ≤ 0.8, however,
annot be attributed to mathematical artifacts and indicates that HC3
nderestimates clouds. A known issue with empirical satellite retrieval
ethods such as the one used for HC3 is that when a higher cloud

asts a shadow on a lower cloud, the apparent reflectance of the latter
ecreases and it is thus classified as a clear-sky. This could perhaps

6 Since 𝑘𝑐 is bounded by 0 and 1, estimations can never fall to the right of
0.8, 1] or to the left of [0, 0.1].



Solar Energy 258 (2023) 175–193H. Verbois et al.

f

e
t

b
a
s
t
d
t
s
c
s
e
a

s
M

Fig. 9. Boxplot of 𝛥|𝑀𝐵𝐸|XGB_global and 𝛥𝑆𝐷𝐸XGB_global for HC3 and benchmark MOS models. Each sample used to build a given boxplot is the 𝛥|𝑀𝐵𝐸|XGB_global (resp. 𝛥𝑆𝐷𝐸XGB_global)
or a given model in a single test station during the test period. The percentage of stations for which XGB_global outperforms other models is shown above the boxplot.
g

xplain some of the positive bias of HC3, but further analysis – beyond
he scope of this paper – is needed to fully understand the causes.

XGB_global can significantly reduce the positive bias of HC3: it is
eneficial to 100% of the test stations for very cloudy skies (𝑘𝑐 ≤ 0.2)
nd to most of them for 𝑘𝑐 < 0.8. For 𝑘𝑐 > 0.8, however, MBEHC3 is
lightly negative, and XGB_global further decreases it, i.e. deteriorates
he estimations, for 96% of the test stations. We suspect that this
eterioration stems from the tendency of least-square regression models
o group their prediction around the mean: in order to reduce the mean
quared error, it is indeed beneficial to avoid extreme values – in this
ase, 𝑘𝑐 close do 1. Typically, a similar pattern would be expected for
mall values of 𝑘𝑐 . However, in the present scenario, HC3 performs
xtremely poorly for 𝑘𝑐 values approaching zero, so XGB_global is still
ble to mitigate its bias.

The distributions of SDEHC3, SDEXGB_global and 𝛥𝑆𝐷𝐸HC3
XGB_global as

a function of the 𝑘𝑐 are given in Figs. 11(c) and 11(d). Somewhat
urprisingly, the improvement pattern is almost the opposite of that of
BE: XGB_global reduces SDEHC3 most significantly for 0.4 ≤ 𝑘𝑐 ≤ 0.8

and generally for all 𝑘𝑐 ≥ 0.4. For overcast skies (𝑘𝑐 ≤ 0.4), on the other
hand, XGB_global slightly deteriorates the SDE of HC3. The contrast
between MBE and SDE may represent the well-known bias–variance
trade-off that statistical learning approaches must manage.

Because XGB_global has an opposite impact on MBE and SDE de-
pending on the 𝑘𝑐 class, we also look at the RMSE (that combines both
MBE and SDE), in Figs. 11(e) and 11(f). We see that overall, XGB_global
185

t

consistently and significantly improves HC3 for all 𝑘𝑐 ≤ 0.8 and only
slightly deteriorates it for 𝑘𝑐 ≥ 0.8.

3.2.2. Dependence on the time of day and year
Because of the daily cycle of solar irradiance, it is interesting to

look at the daily patterns of MBE and SDE. As the longitudes of the
stations range between −4◦ and 8◦, we use the true solar time (TST)7

to normalize across stations. Figs. 12(a) and 12(b) show the distribution
of MBEHC3, MBEXGB_global and 𝛥|𝑀𝐵𝐸|

HC3
XGB_global as a function of the

true solar time. Both HC3 and XGB_global have a relatively constant
MBE across the day. As this is an absolute value, the relative bias is
significantly higher in the morning and evening. XGB_global reduces
HC3 bias consistently during the day, for most stations. We note,
however, that it decreases the MBE of more stations in this afternoon.
This phenomenon may be attributed to the fact that XGB_global de-
pends on past estimates of HC3 (see Section 2.2.1), which are not
informative during the morning hours – integrating outputs of a night
cloud-detection algorithm in the MOS inputs could help alleviate this
drawback.

Figs. 12(c) and 12(d) show the distribution of SDEHC3, SDEXGB_global,
and 𝛥𝑆𝐷𝐸HC3

XGB_global across stations as a function of the time of day.

7 The true solar time is based on the apparent position of the sun at a
iven location. For example, it is noon TST when the sun is at its zenith at
hat location.
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Fig. 10. Boxplot of change in monthly station MBE and SDE between XGB_global and HC3 and the other MOS models. Each sample used to build the boxplots is the value of
𝑆𝐷𝐸 or 𝛥𝑀𝐵𝐸 for a given month in a given station. The percentage of stations for which XGB_global outperforms other models is shown above the boxplot.
Contrary to MBE, SDEHC3 is not constant, and peaks around noon.
XGB_global follows the same pattern and, as for MBE, consistently
reduces the SDE of HC3 across the day. Unlike for MBE, however,
the number of stations that see their SDE decreased by the statistical
correction is almost constant across the day.

It can be insightful to also check for yearly patterns in the (relative)
performances of HC3 and XGB_global. The distributions of MBEHC3,
MBEXGB_global, and 𝛥|𝑀𝐵𝐸|

HC3
XGB_global as a function of the month are

hown in Figs. 13(a) and 13(b). Their SDE counterparts are shown
n Figs. 13(c) and 13(d). HC3 displays a small seasonal bias, with a
lightly lower MBE in summer, and a more significant seasonality in
DE, with larger values in summer.

XGB_global manages to remove some of the seasonality of MBEHC3,
ut cannot completely erase that of SDEHC3: a substantial seasonal
ariability remains. 𝛥𝑆𝐷𝐸HC3

XGB_global is nonetheless larger in summer,
hen SDEHC3 is largest; that is a desirable behavior as it contributes

o even out the estimations error.

.3. Plausibility

In the two previous result subsections, we thoroughly evaluated
he impact of our proposed model, XGB_global, on the precision and
ccuracy of the irradiance estimations. These two metrics have some
186
limitations (Vallance et al., 2017). In particular, they do not evaluate
the plausibility of the models, i.e. how realistic the SSI estimations
are Verbois et al. (2020). In this subsection, we thus propose to an-
alyze the impact of the statistical correction on the plausibility of the
irradiance estimations.

3.3.1. Empirical distributions of estimated 𝑘𝑐
We first look at the plausibility of the estimations with a ‘‘static’’

perspective, looking only at the empirical distributions of the clear-sky
index 𝑘𝑐 . The distribution of 𝑘𝑐 is shown in Fig. 14 for HC3, XGB_global,
and as measured at the stations; a single distribution is shown for the
whole test set – 50 stations and 3 years.

XGB_global distribution of 𝑘𝑐 is closer to the observations than
HC3 for 𝑘𝑐 < 0.6. Nonetheless, the MOS model still under-predicts
overcast skies (𝑘𝑐 < 0.2), even if it also improves over HC3 in that
range. On the contrary, for clearer skies (𝑘𝑐 > 0.8), the plausibility
of irradiance estimations is slightly degraded by XGB_global. All three
histograms exhibit a peak for 𝑘𝑐 > 0.8, but the peak is too narrow
for XGB_global. This is in agreement with the 𝑘𝑐 -dependant results
presented in Section 3.2, which show that XGB_global has a slightly
higher RMSE and MBE than HC3 for 𝑘 > 0.8.
𝑐
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Fig. 11. Boxplot of SDE, 𝛥𝑆𝐷𝐸HC3
XGB_global, MBE, 𝛥|𝑀𝐵𝐸|

HC3
XGB_global, RMSE, and 𝛥𝑅𝑀𝑆𝐸HC3

XGB_global for all stations, as a function of 𝑘𝑐 . The percentage of stations for which XGB_global
outperforms HC3 is indicated above each boxplot.
3.3.2. Empirical distributions of ramp rate
We then consider the dynamics of the signal, through the ramp rate

of 𝑘𝑐 , 𝑟𝑘𝑐 (𝑡) = 𝑘𝑐 (𝑡) − 𝑘𝑐 (𝑡 − 1). The ramp-rate is a simple proxy for
the variability of a 𝑘𝑐 time series; it is also important for technical
considerations, as a high ramp rate can impact the operation of an
electrical grid or a photovoltaic power plant.
187
The distribution of the 𝑘𝑐 ramp rates is shown for HC3, XGB_global
and the measurements in Fig. 15. XGB_global positive ramp rates
are almost always closer to the measurements than HC3. In particu-
lar, XGB_global partially compensates for the over-occurrence of pos-
itive ramp rates observed with HC3 and almost fully corrects the
under-occurrence of HC3 negative ramp rates.
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Fig. 12. Boxplot of MBE, 𝛥|𝑀𝐵𝐸|

HC3
XGB_global, SDE and 𝛥𝑆𝐷𝐸HC3

XGB_global across the 50 test stations, as a function of the true solar time. The percentage of stations for which XGB_global
utperforms HC3 is indicated above each boxplot.
.3.3. Spatial patterns
Finally, we want to probe the spatial behavior of the signals. To

hat end, we compute the correlation between every pair of test stations
nd group the results in 10 bins, depending on the pairwise geodesic
istance. The average pairwise correlation for each bin is estimated
sing the sample mean estimator, whose standard deviation can also
e estimated (see Appendix). The results are shown in Fig. 16, where
188
the 90% confidence intervals are also represented. We see that HC3
and XGB_global pairwise correlation is generally higher than in the
observations. Furthermore, we notice that for distances above 100 or
200 km, XGB_global pairwise correlation is slightly higher than that of
HC3. The difference is not large, but it is statistically significant, and we
can conclude that XGB_global slightly deteriorates the spatial behavior
of HC3.



Solar Energy 258 (2023) 175–193H. Verbois et al.

o

i
e
X
m
s

m
a
m
p
T

a

Fig. 13. Boxplot of station MBE, SDE, 𝛥|𝑀𝐵𝐸|

HC3
XGB_global, and 𝛥𝑆𝐷𝐸HC3

XGB_global as a function of the month of the year. The percentage of month × stations for which XGB_global
utperforms HC3 is indicated for each month in green, above the boxplot.
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A known pitfall of statistical post-processing in energy meteorology
s that post-processing algorithms sometimes produce overly smooth
stimations (Vallance et al., 2017). We saw in Section 3.3.2 that
GB_global does not deteriorate the temporal dynamics of the esti-
ation. However, a possible explanation for its higher-than-expected
patial correlation is that it does smooth the signal in space.

While it may not impact the precision or accuracy of the GHI esti-
ations, spatial smoothing might cause an underestimation of the vari-

bility and variety of GHI in a given region. This can impact resource
anagement strategies at several time scales. Fully understanding and
recisely describing the consequences of spatial smoothing on, e.g., a
SO, is however out of the scope of this paper.

To further understand the effect of XGB_global on the spatial char-
cteristics of the SSI, we inspect the whole irradiance field produced by
189

i

GB_global, i.e. not only at the location of the measurement stations.
ig. 17 shows the average GHI over France for HC3 (a) and XGB_global
b), as well as the yearly average of the difference between HC3 and
GB_global (c). Spatial artifacts – latitude–longitude discontinuities –
re clearly visible in Fig. 17(c) and can even be distinguished in
ig. 17(b).

They are likely caused by the regression trees underlying the ex-
reme gradient boosting algorithm (XGB). As explained in Section 2.2.1,
GB prediction is based on a large number of regression trees, that
artition the predictor space in rectangles. Since there are relatively
ew values of latitude and longitude (compared to e.g., values of 𝑘𝑐 and
HI), it is possible to get steps in XGB estimation function where the

atitude or longitude matches some of the training stations. A similar
ssue was described in Konstantinov et al. (2021).
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Fig. 14. Distribution of 𝑘𝑐 over the 50 test stations and 2 test years for HC3 (solid orange), XGB_global (solid green) and as measured (dash black) for all stations. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Distribution of 𝑘𝑐 ramp rates over the 50 test stations and 2 test years for HC3 (solid orange), XGB_global (solid green) and as measured (dash black) for all stations.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The impact of such artifacts on the quality of the estimations is not
clear, and requires further investigation.

4. Conclusions and perspectives

In this work we presented XGB_global, a new global adaptation
technique of satellite-based estimations of SSI that extrapolates both in
space and time from a set of pyranometers. The technique was designed
so that it can be used operationally to improve hourly HelioClim3 maps
190

of irradiance on-the-fly.
We benchmarked this correction model against several alternative
statistical approaches. In particular, we showed that our proposed
single location-aware model outperforms a combination of multiple
local models with interpolation. We demonstrated the benefit of using
a non-linear regression model as well. XGB_global was also compared
to a local correction model – or site adaptation technique – and to
a spatial correction model, based on the same regression algorithm.
As expected, our global model does not perform as well as the local
and spatial model on average. However, XGB_global turned out to be
slightly more robust that the local model; this is perhaps because the

global model benefits from a much larger training set.
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Fig. 16. Mean pairwise correlation as a function of the distance between pairs of stations for HC3, XGB_global and measured irradiance. The 90% confidence intervals are
represented for each curve by a shaded area.
i

𝑥

The performances of our proposed model, XGB_global, were then
thoroughly compared with those of HelioClim3 (HC3). We found the
improvement in both MBE, SDE, and, thus, RMSE, to be quite sys-
tematic and to hold for various conditions, in particular for most sky
conditions. Admittedly, XGB_global does not improve HC3 for clear-sky
conditions and even slightly increase the estimations’ bias under such
conditions. We hypothesize that the model benefits from a relatively
large number of predictors and thereby can adapt its correction to
the conditions. The plausibility of XGB_global and HC3 were also
compared: corrected estimations were at least as plausible as HC3
estimations as long as we looked at time series.

When we considered the spatial properties of the estimations, how-
ever, XGB_global appeared to slightly deteriorate the plausibility of
HC3. Perhaps more critically, it also introduced spatial discontinuities
in the irradiance map. While it is not obvious how such artifacts impact
the quality of the estimations, they would likely affect the confidence
that potential users would put in them. This result also underlines the
importance to go beyond classical metrics such as RMSE, SDE, and MBE
when analyzing the performance of a model.

This work is a proof of concept. We showed that, under certain
conditions, machine-learning-based global adaptation technique can
significantly outperform traditional approaches. We also demonstrated
the benefit of both non-linearity and large predictor space. An extreme
gradient boosting algorithm (XGB) was used, but it is the authors
opinion that other sophisticated non-linear regression algorithms could
perform similarly well with the same predictors.

Admittedly, the conditions of the experiment were favorable. Firstly,
the model benefited from a relatively dense network of measurement
stations. Not all regions of the world enjoy such a network, and future
work should investigate the sensitivity of the model to the network
density. Secondly, the model training and testing was restricted to
metropolitan France, which covers less than 1000 by 1000 km. It is
not sure that a single global model could work for significantly larger
areas. Extending our proposed approach to a continent or beyond might
require some sort of partitioning based on geographical or climatic
zones. This aspect should also be explored in future studies.

Finally, the spatial nature of the estimations require more work
and should be investigated in further studies. In particular, developing
an objective metric to measure spatial discontinuities would be useful,
191
and could help better understand the impact they may have on down-
stream usages. Other algorithms should be tested, to try and get rid of
the spatial artifacts. An alternative gradient boosting model, proposed
by Konstantinov et al. (2021) uses partially randomized regression
trees to avoid discontinuities in the predictor space, and would thus
be a good candidate. Neural networks are also less likely to introduce
discontinuities, by design, and should be tested — convolutional neural
networks could be particularly appropriate in this context, as they are
designed to handle spatial information. Lastly, it would be interesting
to explore the potential of geo-statistical regression techniques such as
Kriging.
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Appendix. Estimating the standard deviation of the sample mean

Given a random variable 𝑥, with average 𝜇 and standard deviation
𝜎, and a set of samples {𝑥𝑖}, 𝑖 ∈ {1..𝑁}, the sample mean 𝑥̄ define
n Eq. (A.1) is an unbiased estimator of E[𝑥].

̄ = 1
𝑁
∑

𝑥𝑖 (A.1)

𝑁 𝑖=1
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Fig. 17. Mean GHI estimated by HC3 (a), XGB_global (b) for the test year 2018, and the yearly difference (c).
The variance of 𝑥̄ is given by:

𝑣𝑎𝑟(𝑥̄) = 𝜎2

𝑁
(A.2)

𝑁 is known and 𝜎2 can be estimated by the sample variance 𝜎2:

𝜎2 = 1
𝑁 − 1

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝑥̄
)2 (A.3)

Eqs. (A.1) and (A.3) are valid for all distributions. To estimate the
90% confidence interval for 𝑥̄, however, we assume that this sample
mean estimator is Gaussian, so that we can use corresponding look-up
tables between variance and percentiles.
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