WP4 : Advanced process studies based on highly documented cases

Task 4.1 : Transition thin/thick fog : Cheikh
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Task 4.1 : conceptual model reminder (if needed)
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Task 4.1 : Transition thin/thick fog - increasing turbulence
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Task 4.1 : Transition thin/thick fog — Entrainment at fog top (Théophane)

Computation of the real adiabaticity (a = dALWC/dz,..,) and lapse (y = dT/dz,.m) rate

fractions within the fog layer (activation and entrainment included). Conceptual model not

designed for thin fog.

Evaluation of different thresholds (TKE, Grad T, CTH) for the transition from optically

thin to optically thick fog : OK for most of the thresholds except LWP

Significant vertical variability between stable (High LWC values near the ground, a.<0

y<0 ) and mature phases (more adiabatic LWC profile, >0 y>0)

Transition to optically thick fog not linear, highly dependant on non-local processes.

Correlation between o and y when fog is very stable (a<-2) or adiabatic (o>0)
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Task 4.2 : Stratus-to-fog transition : Maroua
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Task 4.3 : Fog dissipation phase
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Future work

Applying results from SOFOG-3D: study of stable-adiabatic transition and dissipation on longer

datasets (e.g. SIRTA, other ACTRIS station) with a particular focus on dynamics, thermodynamics,
and turbulence. (DGA funded 1-yr postdoc)

Parafog v3: machine learning approach ingesting DCR, MWR, ALC, DL measurements to produce for
transition and fog dissipation nowcasting. Realtime monitoring of fog evolution. New tool to
monitor formation, transition, dissipation.
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Future work

PhD CNRM : Contribution of a deep learning algorithm combining a set of innovative observations
(ceilometer, microwave radiometer, cloud radar, wind lidar, etc.) with the large-scale information
provided by the AROME nowcasting version (temperature and humidity advection, clouds, winds,
etc...) to forecast fog events and evolution of their life cycle.

Direction : Pauline Martinet
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