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Unraveling the optical shape of snow

Alvaro Robledano 1,2 , Ghislain Picard1, Marie Dumont 2, Frédéric Flin 2,
Laurent Arnaud1 & Quentin Libois 3

The reflection of sunlight off the snow is a major driver of the Earth’s climate.
This reflection is governed by the shape and arrangement of ice crystals at the
micrometer scale, called snowmicrostructure. However, snow optical models
overlook the complexity of this microstructure by using simple shapes, and
mainly spheres. The use of these various shapes leads to large uncertainties in
climate modeling, which could reach 1.2 K in global air temperature. Here, we
accurately simulate light propagation in three-dimensional images of natural
snow at themicrometer scale, revealing the optical shape of snow. This optical
shape is neither spherical nor close to the other idealized shapes commonly
used in models. Instead, it more closely approximates a collection of convex
particles without symmetry. Besides providing a more realistic representation
of snow in the visible and near-infrared spectral region (400 to 1400 nm), this
breakthrough can be directly used in climate models, reducing by 3 the
uncertainties in global air temperature related to the optical shape of snow.

Ice crystals formed in the atmosphere show a large variety of sophis-
ticated and, often, near-perfect geometric shapes1 (Fig. 1a). The inter-
action of sunlight with such crystals sometimes results in well-known
optical phenomena, called halos2, whose nature is directly related to
the shape of the crystals3.

Once the ice crystals are deposited on the ground and form the
snow cover, they establish bonds with each other and their shape
drastically changes. As a consequence, the original atmospheric crystals
are rarely distinguishable after a few hours or days4,5, making snow
cover a two-phase porous material made of ice and air, rather than a
collection of individual particles. Snow is continuously evolving due to
the thermodynamical non-equilibrium between ice and interstitial air
that leads to recrystallisation of the water molecules, a process called
metamorphism. This process leads to a variety of snowmorphologies at
the micrometer scale, called microstructure hereinafter, which are less
regular, less symmetrical and more diverse than the original crystals
(Fig. 1b–d). Hence the interactionof sunlightwith snowon theground is
more complicated tomodel thanwith ice clouds in the atmosphere, and
is not yet fully understood. The resultinguncertainties significantly alter
the estimation of the solar radiation reflected by snow and in turn the
Earth’s radiative budget6,7. Recent climate simulations thus show that
simply changing the snowmicrostructure canmodify the global annual-
mean 2m air temperature by nearly 1.2 K8.

Early studies have tried to relate the snowoptical properties to the
snow microstructure, relying on strong approximations such as con-
sidering snow as a collection of disconnected and independent ice
spheres9. Under this hypothesis, the Mie theory provides the optical
properties for a given sphere size. Later on, the relative success of the
equivalent-sphere concept, i.e., the representation of snow as a col-
lection of spheres with the same volume-to-area ratio, to simulate
snow albedo, led to the spread of this concept in most snow optical
models10–12. This representation provided a clear relationship between
the snow albedo and the sphere size10,13, called the “optical diameter”.
However, posterior studies highlighted several caveats of the spherical
assumption14–16, particularly in determining how the snow reflects light
in different directions and how deep the light penetrates17–20. This
uncertain representation has implications for the interpretation of
satellite data21,22, for snow photochemistry23–25, for light transmission
through snow over sea ice26, and more importantly for the surface
energy budget of snow-covered regions6–8. This raises the need to go
beyond the unrealistic but still widely used spherical representation
of snow.

Many alternative shapes have been used to describe the snow
microstructure, such as fractals27, Voronoi tessellations28, cubes, hex-
aedra and hyperboloids, and combinations thereof16,29. However, all
these attempts have in common that they still represent snow as a
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collection of particles with well-defined shapes. Conversely, Malinka30

considered snow as a two-phase random medium without any parti-
cular shape, but it is still unclearwhether this approach is fully valid for
representing the microstructure of natural snow31,32. Despite all these
attempts to derive the optical properties of snow by fitting various
shapes or hypotheses onto the complexity of the snowmicrostructure,
little is known about its actual role. In simpler words, the “optical
shape” of snow—a concept we introduce here following that of the
“optical diameter”—remains largely unknown.

Here, we address the question of the optical shape of snow,
across the wide diversity of snowmicrostructures. To do so, we apply
a ray-tracing model to simulate the path and attenuation of light in
3D images issued frommicro-computed tomography33–35, which over
two decades has provided detailed knowledge of the microstructure
of snow with a resolution of a few micrometers (Fig. 1e–g). From
the simulation results we deduce the values of two main optical
shape parameters, namely the absorption enhancement parameter B
and the geometric asymmetry parameter gG 27 (Fig. 1h, i). B quantifies
the lengthening of the light path within the absorbing phase (the ice)
due to refraction and internal reflections, and is important for
accurately estimating the light absorption in snow. gG quantifies the
tendency of the medium to scatter light forward or backward, and is
essential to predict how deep light can penetrate into snow, or
conversely how easily it is reflected back to the atmosphere. Both
parameters characterize the optical shape independently of the size.
Snow optical models, such as those implemented in climate
models36–38, directly or indirectly rely on prescribed values of these
parameters, which are most of the time set to the values for spheres.
B and gG have previously been estimated for individual ice particles
with particular shapes27,39–42 or indirectly estimated from macro-
scopic measurements on snow43,44. However, direct estimation of B
and gG for natural snow along with their variability is still unknown45.
In the present study, our simulations provide an accurate estimate of
the range of these fundamental parameters for natural snow, paving
the way for a more realistic representation of snow in optical and
climate models.

Results
The optical shape of natural snow
The shape parameters B and gG were computed over 33 snow micro-
structure images, that cover most of the snow types referenced in the
international classification of seasonal snow on the ground4 (see
Supplementary Table 1). The computations are made with the Rough
Surface Ray-Tracing (RSRT) model46,47, which has been extended to
simulate light propagation in 3Dmicrostructure images (seeMethods).
For every image, simulations are run in the visible and near-infrared
(NIR) spectral region, every 50nm from 400nm to 1400 nm. The
simulations track 106 photons through the microstructure and report
the energy reflected back and the profile of energy within the snow-
pack, which are then used to deduce B and gG (macroscopic method
hereinafter). In addition, we implemented a microscopic approach
(called geometric method) that records the traveled distance within
the ice, and the direction changes between entering and exiting the ice
(see Methods).

The parameters B and gG of all snow samples at 900nm are pre-
sented in Fig. 2, along with previous estimates obtained for idealized
geometric shapes. Figure 2 also shows the values predicted by the two-
phase randommedium theory30, where B is related to the ice refractive
index n by B = n2. gG can also be expressed in terms of n, in a less trivial
way (see Supplementary Methods 1). We use here the 900 nm results
for a comparison with previous studies40,48. These results are as well a
compromise between the lower wavelengths where the modeling
uncertainties are higher (Supplementary Fig. 1) and the higher wave-
lengthswhere the assumption of low absorption of ice is less valid than
at shorter wavelengths. The absorption enhancement parameter B of
natural snow clearly clusters around 1.7 (mean of the 33 samples ±
1 standard deviation: 1.68 ±0.02 in Fig. 2a, 1.70 ±0.00 in Fig. 2c), while
for idealized shapes it spans a larger range between 1.25 for spheres to
1.84 for fractals. However, except fractals, all other featured shapes
have a B smaller than 1.7, meaning that natural snow absorbs energy
more efficiently than these idealized shapes. The value of 1.7 is com-
parable to that experimentally retrieved in43 (1.6 ± 0.1), and is slightly
higher than the one in45 (1.49). It matches the predicted value for the

Fig. 1 | Fromice crystals to snowmicrostructure. a Photographof an ice crystal in
the atmosphere (stellar dendrite - K. Libbrecht). b Photograph of natural snow on
the ground (decomposing and fragmented precipitation particles - Météo-France).
White scale bars: 1mm. c, d Photographs of natural snow on the ground (rounded
grains and depth hoar - F. Dominé). White scale bars: 1mm. e–g 3Dmicrostructure
of three natural snow samples as revealed by X-ray tomography. From left to right:

precipitation particles, rounded grains, and depth hoar. h, i Illustration of the
absorption enhancement parameter B and the geometric asymmetry parameter gG

in a 2D space. In h, the red arrows represent a photon path accounting for refrac-
tion and internal reflections, while the white arrows represent propagation in a
straight line. In i, the white arrows represent an incoming set of photons, and the
red arrows represent an ensemble of possible outgoing photon paths.
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two-phase random medium, that is B = 1.70 at λ = 900 nm30. Over the
600 to 1200nm range, B barely varies, less than 2%with the geometric
method and no more than 7% with the macroscopic method (Supple-
mentary Fig. 2). For wavelengths shorter and longer than 600nm and
1200nm, respectively, the macroscopic method is less accurate (see
Methods) but the geometric method still yields B = n2. Hence, the
absorption enhancement of natural snow do not depend on the
microstructural details. Instead, B is virtually constant and equal to n2

over the 400 to 1400 nm range.
The geometric asymmetry parameter gG of natural snow varies

between 0.60 and 0.73 (0.65 ± 0.03) at 900nm with negligible varia-
tions across the visible and NIR range (Fig. 2a, c and Supplementary
Fig. 2), while for the geometric shapes it spreads from0.50 for fractals
to 0.79 for spheres. This means that snow is less forward-scattering
than spheres, but more than most of the featured geometric shapes.
These values agree with those presented in previous studies (gG = 0.68
at λ = 900nm48; gG varying from 0.66 to 0.7340 or 0.64 to 0.66 for a
more limited dataset45).

The albedo and the light penetration depth are controlled by the
grain size (via the specific surface area, SSA) and the combination of B
and gG. Indeed, the ratio B / SSA(1 - gG) governs the influence of the size
and theoptical shape on the albedo and the productB(1 - gG)SSAon the
light penetration40. In the representation in Fig. 2b, d, two snowpacks
with equal size (i.e. same SSA) but different shapes have the same
albedo (respectively light penetration) only if the shapes have the
same ordinate (respectively abscissa). In other words, snow samples
with equal size but different shape may have different albedo or light
penetration. Natural snow spans a region distinct from that of the
geometric shapes in the 2D space defined by these quantities (Fig. 2b,
d), implying that none of the studied geometric shapes can be used to
satisfactorily simulate snow albedo and light penetration at the
same time.

Interestingly, a relationship arises between the albedo and the
snow type. For a given SSA, fresh snow (PP), like spheres, is a relatively
inefficient reflector, while rounded grains (RG) nearly behave as other
idealized shapes, such as cylinders (Fig. 2b, d and Supplementary
Fig. 3). This is counter-intuitive as rounded grains or melt forms (MF)
have the most spherical shape. Regarding light penetration, natural
snow behaves similarly to cylinders, and roughly halfway between
spheres and fractals (Fig. 2b, d and Supplementary Fig. 3). Fresh snow
is, however, more penetrating than the rest of snow types for a given
SSA. Even if the spectral albedo of non-spherical shapes can be esti-
mated using spheres by scaling their radius49, light penetration depth
in a medium with spheres is approximately twice longer than in snow
with the sameSSA. These results show that, in order to represent these
quantities, natural snow should not be represented by the geometric
shapes that have been commonly implemented in radiative transfer
models, and in particular by spheres.

Towards a universal representation of snow microstructure in
optical models
To further understandwhy all the featured snow types lead to the same
constant value for absorption enhancement, we investigate with the
ray-tracing model how the value of B varies when an idealized shape is
progressively deformed. To this endweexplore three shapes: a sphere,
a cube and a convex shape without any symmetry, unlike the first two
(Supplementary Methods 2 and Supplementary Fig. 4). For the sphere
and the convex shape, the number of triangular facets used to gen-
erate the surface is gradually decreased, while for the cube, each of the
8 corners is translated in space in a random direction, with an
increasing distance. In all cases, this results in increasingly deformed
shapes.

TheparametersB and gGof the three shapes at 900nm, computed
with the geometric method, are presented in Fig. 3. Interestingly, for

Fig. 2 | The optical shape of snow. a, b Absorption enhancement parameter B and
geometric asymmetry parameter gG (and combinations) of snow at 900 nm,
retrieved with the macroscopic method. c, d Idem, retrieved with the geometric
method. Note that albedo and light penetration depend on other factors than
shape, in particular on grain size, so the representation in b, dmust be interpreted
at equal snow grain size. In every panel, the dark symbols correspond to geometric

shapes reported in the literature (see Supplementary Table 2) and the two-phase
random medium, labeled in a as Malinka (2014) (see Supplementary Methods 1).
The colored ones correspond to the 33 natural snow samples, depending on the
snow type4: Precipitation Particles (PP), Decomposing and Fragmented precipita-
tion particles (DF), Faceted Crystals (FC), Depth Hoar (DH), Rounded Grains (RG)
and Melt Forms (MF).
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the convex shape, B is constant, while for spheres and cubes, B pro-
gressively converges as the deformation increases to the value found
for natural snow and predicted for the two-phase random medium
(1.7 - Fig. 3, top panel). The theoretical value of B for spheres, around
1.259,40, is only obtained for the sphere with the largest number of
facets (≈5 million), suggesting that even the smallest deviation from
this perfection has large consequences for optical properties. This is
relevant to understand that, even if rounded grains or melt formsmay
look spherical, their B and gG values considerably differ from those of
“perfect” spheres.

The underlying reason explaining why and when B = n2 can be
established from a series of fundamental studies in mathematics,
ecology, optics and nuclear physics50–53. The absorption within a
weakly-absorbing particle is proportional to themean path traveled by
photons in the particle, and Bmeasures how this distance is increased
compared to the propagation in a straight line, in the case of diffuse
illumination. B is influenced by two effects, (i) how the photons are
focused as they enter the particle (refraction), and (ii) the mean dis-
tance traveled by photons in the particle. The first effect introduces a
factor n2 and is independent of the particle shape as demonstrated
theoretically and experimentally54,55. The second effect introduces a
factor of exactly 1 (thus leading to B = n2) in several cases: for non-
refractive particles (n = 1) the photons propagate in straight lines and
the mean distance traveled in the particle <l> is given by the Cauchy
formula <l> = 4V/S (V and S are the volume and surface area of the
particle). The same mean distance is obtained for refractive (n > 1)
particles composed of a scattering material55 because the Cauchy
formula holds for a wide class of random walks51,53. The reason is the
compensating effect of scattering: longer tortuous paths are balanced
by short paths that escape quickly from the particle. However, ice is
not a scattering material. In that case, the mathematical theory of
billiards can be applied to photons bouncing inside a particle50, and it
was shown52 that if the photons traverse the entire particle in all
directions perfectly uniformly, themean distance is again given by the
Cauchy formula, which implies B = n2. Some billiards (i.e., shapes) are
ergodic and verify this isotropy condition for any refractive index.
Conversely, idealized shapes such as spheres and cubes, are non-
ergodic and some regions may not be uniformly explored by photons
coming fromtheoutside, especially if the refractive index is larger than
a shape-dependent critical value52. As these unexplored regions

generally correspond to very long paths that are only accessible
through internal scattering, the mean traveled distance decreases,
leading to B < n2 as observed in Fig. 4 for spheres and cubes. Note also
that strong absorption also reduces the very long paths, leading to a
decreased B (Supplementary Fig. 5). To conclude, the fact that we find
B = n2 for all the investigated snow samples in the visible and NIR
spectral region strongly suggests that the snow microstructure is
fundamentally ergodic.

To investigate whether this result applies to materials other than
snow,we computedB for differentn valueswith the ray-tracingmodel.
We find that the value of B for near-perfect spheres closely follows the
analytical expression for spheres9, while the equality between B and n2

stands for less symmetric spheres (Fig. 4a), as well as for the large
diversity of snow samples studied here (Fig. 4b). This equality is more
general and is actually an experimental evidence that, in terms of
absorption enhancement, a weakly absorbing porous material like
snow can be represented as a collection of convex particles without
symmetry or as a two-phase random medium. Representing such
porous media in these ways may be useful and crucial for refining the
computation of other shape-dependent optical properties56, with a
wide range of applications well beyond the snow optics community,
such as the optical characterization of pharmaceutical powders57 or
solar cell design58.

In contrast to B, gG is almost unaffected by the shape deformation
(Fig. 3, bottom panel), although it is more sensitive to the particle
shape or the type of snow (Fig. 2). For spheres, gG closely matches the
value obtained by theoretical calculations9 and in other studies27,40. For
cubes, gG decreases very slightly when the random displacement is
applied to the corners, breaking the symmetries between the faces.
While B is very sensitive to the rare and long paths discussed above, we
conclude that gG is more sensitive to the few internal reflections
experienced by the photons, which determine the ability of snow to
scatter light forward. Consequently, gG does not have a unique value
for snow, but mainly spans the interval 0.62–0.68, with a slightly
higher value for fresh snow. This range is however much smaller than
that estimated from idealized shapes, and importantly, it does not
contain the value for spheres (0.79), still commonly implemented in
some climatemodels36,37. The values of the two-phase randommedium
and the convex particle (0.67 and 0.63, respectively) are more con-
sistent but they do not represent the full range of values across the

Fig. 3 | Optical shape parameters of gradually deformed idealized shapes.
Variations of the optical shape parameters (absorption enhancement parameter B
(top); geometric asymmetry parameter gG (bottom)) of a gradually deformed

sphere (left), cube (center) and analytical convex shape (right). All the simulations
are performed at 900nm with the geometric method.
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diverse types of snow. Even if different B and gG values might be
expected for under-represented snow types in our study, such as very
peculiar samples of fresh snow or strongly developed depth hoar, our
results show that the behavior of snow in the 400 to 1400nm range is
less variable and less shape-dependent than thought so far. This con-
stitutes a step towards amore accurate anduniversal representation of
snow in optical models.

Discussion
Climate simulations suggest that an ambiguous treatment of snow
shape leads to large uncertainties in the estimation of surface radiative
forcing6,7 and global air temperature of up to 1.17 K8. This uncertainty is
due to the high sensitivity of the global temperature to the snow
albedo, enhancedbypotent climate feedbacks59–61. These uncertainties
in snow albedo are driven by B and gG through the single-scattering
properties of snow.While these parametersmight not be directly used
in such relevant models, it is possible to convert these quantities into
other optical properties, such as the asymmetry parameter g and the
single-scattering albedo ω. g determines the first order angular varia-
tions of the phase function and is directly related to the previously
studied gG. The single-scattering co-albedo (1 - ω) depends linearly, for
a given particle size, on B (see Methods). Only recently snow radiative
transfer schemes implemented in climate models, such as SNICAR-
ADv3, started to consider non-spherical shapes for g, with para-
meterizations based on spheroids, hexagonal plates and fractals6,7,38,62.
Still, the spherical assumption is used for B (indirectly via ω). This
simplification has a direct impact on the albedo, and also strong con-
sequences for the light penetrationdepth, as spheres are roughly twice
more penetrating than natural snow (Fig. 2). This has implications for
the thermal regime of the snowpack63 and for the transmittance of
snow over ground45 or over sea ice26. To our knowledge, only in8 non-
spherical values of B and gG are considered. Their 1.17 K global air
temperature change was obtained by varying together g from 0.89 to
0.78 and B from 1.25 to ≈ 1.62 (indirectly via ω64).

Here we provide strong observational constraints on B and g for
snow, which shall help reduce uncertainties in climate studies by
successfully simulating snow albedo and light penetration at the same

time. B is universal and equal to n2, and according to our simulations,
the value of g for snow over the 33 samples is g =0.82 ± 0.01, with
negligible variations in the 400 to 1400nm wavelength range.
Although performing climate simulations with these updated values is
beyond the scope of this study, we propose a simple estimation of the
impact on global air temperature, based on the study from8 and by
considering the quantities represented in Fig. 2b, d (see Methods). By
using the constant values of B = 1.7 and g =0.82 (or equivalently
gG = 0.65) instead of the values for the non-spherical shape, the simu-
lated global annual-mean air temperaturewould shift by roughly 0.6K,
assuming similar sensitivity of temperature to snow albedo as in8.
Moreover, the narrow range of values found here for natural snow
would drastically reduce the uncertainties due to the equivocal impact
of snow morphology, dropping from 1.17 K to approximately 0.4K.
Beyond climate simulations, the refined knowledge of the optical
shape of snow obtained in this study will be beneficial wherever snow
optics matters, from snow photochemistry to remote sensing algo-
rithms, solving the long-standing issue of the optical shape of snow.

Methods
Snow microstructure from X-ray tomography
The 3D snow microstructure images have been acquired over the last
decades by theCentre d’Étudesde laNeige (Météo-France - CNRS). The
dataset presented here (33 images) includes mainly seasonal snow
collected in the FrenchAlps, as well as several samples resulting from a
series of laboratory metamorphism experiments32,65–69. The X-ray
tomography was performed at various resolutions, from 4.91 µm to
11.65 µm. Depending on the experimental set-up, the sample volume
varied between 2.5 × 2.5 × 2.5 and 9.5 × 9.5 × 9.5mm3. For image
acquisition, samples were first impregnated with liquid
1-chloronaphthalene around −10 °C, and placed below −20 °C, thus
forcing the chloronaphthalene to freeze. Small cylinders were then
machined at −30 °C, inserted in plexiglas caps and fixed on copper
columns for their later insertion into CellStat, a cold cell specifically
designed for tomography of frozen samples at ambient
temperature68,70. After tomography, the differences in X-ray attenua-
tion between the ice, 1-chloronaphthalene and remaining air bubbles

Fig. 4 | Variations of the absorption enhancement parameter B with a varying
ice refractive index n. a Variations for spheres. The number of triangular facets
used to generate the surface is gradually increased. The BB 1974 curve is the ana-
lytical expression for spheres of B in terms of n (Eq. 9 in9). b Variations for natural
snow. 9 samples are considered, covering most of the main snow types. Three 3D

images of snow samples are shown to illustrate the wide diversity of snow micro-
structures. The simulations are done with the geometric method, and the ice
absorption coefficient γ is kept constant and corresponding to the ice absorption
at 900nm.
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were used to segment the reconstructed 3D grey-level images into 3D
binary images. Surface meshes were then obtained through an auto-
mated pipeline using iso2mesh71. For each image, the function ‘v2s’ of
this mesh generation toolbox was used with the option ‘cgalmesh’,
ensuring the most robust path to product meshes from binary
volumes. Themaximal deviation from the 0.5 isosurface was set below
0.5 and the maximum radius of the Delaunay spheres was chosen
smaller than 15 pixels. For each closed surface, the mesh was then
automatically checked for orientation consistency of the facets. A final
manual verification and correction step was realized using MeshLab72.

The whole description of the dataset (type of snow, resolution,
etc) is available in the Supplementary Table 1. The corresponding snow
microstructural properties (density, SSA)were computed directly over
the mesh with the trimesh Python package73. Visualizations of several
of these images are available in Fig. 1e–g.

The ray-tracing model
The existing Rough Surface Ray-Tracing (RSRT) model, originally
designed to simulate albedo over rough surfaces and topography46,47,
has been adapted to trace light propagation in 3D microstructure
images. In this Monte Carlo photon-tracking approach, a set of
photons (rays) is followed through the snow from their source to
termination (absorption or escape at the top of the sample), relying
on the geometric optics approximation (i.e., we consider the
microstructure features to be much larger than the wavelength) to
simulate the ray path. The light propagation is governed by both
absorption within the ice phase (which is wavelength-dependent)
and the fundamental laws of reflection and refraction at each air–ice
interface, as in74 and16. The origin and initial direction of each ray is
randomly generated above the snow microstructure image. When a
ray encounters an ice–air interface, the choice between reflection
and refraction is random, and depends on the Fresnel’s law of
reflectance (Supplementary Methods 3). The chosen ray carries all
the incident energy. When traveling through the ice phase, part of
the energy carried by the ray is lost by absorption, following an
exponential decay proportional to the traveled distance in the ice
phase (i.e. Beer’s law). This is wavelength-dependent as it considers
the ice absorption coefficient γ:

γ =
4π
λ

ni λð Þ ð1Þ

where ni (λ) is the imaginary part of the ice refractive index75.
To simulate a semi-infinite snowpack, a replication algorithm is

applied when a ray goes through the boundaries of the original snow
microstructure image. Replicating periodically the source image
allows simulating a macroscopic snowpack from a single snow
microstructure image, largely reducing the computational cost of this
approach (in particular with respect to the memory storage of
themesh). It also has somedrawbacks, as we consider the snowpack to
be homogeneous and single-layer, with snowproperties defined by the
source microstructure image, such as density or specific surface area
(SSA). However, this does not prevent the use of the intrinsic B and gG

quantities in a multi-layered snowpack, where the properties vary
vertically76.

Every single ray is traced until it escapes the simulated semi-
infinite snowpack in the upward direction, or until its energy goes
below a defined, very low threshold (we consider the ray to be
absorbed). N = 106 rays are launched in each simulation to reach a
reasonable accuracy (uncertainty in this Monte-Carlo framework
decreases as 1/√N).

B and gG computation: the macroscopic method
Two different methods have been implemented to derive the optical
shape parameters, B and gG, from 3D images. The hereinafter called

macroscopic method relies on the reflected energy by the
snowpack and the vertical profile of energy in the snowpack. Starting
from the approximate asymptotic radiative transfer (AART) theory27,
and with the formalism developed in40, the bi-hemispherical
albedo α (hereafter albedo) and the asymptotic flux extinction
coefficient ke are expressed in terms of the optical shape parameters
B and gG by:

α ’ exp �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BγV

3Σ 1� gG
� �

s !
ð2Þ

ke ’
ρ
ρice

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3BγΣ
V

1� gG
� �r

ð3Þ

from where we formulate B and g G as:

B ’ �ρiceke λð Þln α λð Þð Þ
4ργ λð Þ ð4Þ

gG ’ 1 +
16ke λð Þ

3ρSSAln α λð Þð Þ ð5Þ

using the snow SSA = 4Σ / (Vρice), ρ the snow density and ρice the
ice density (i.e. 917 kgm−3). Σ and V are, respectively, the average
projected area and the average volume of a particle. Albedo differ-
ences of 0.002 are found between a Mie+DISORT model (e.g.77) – a
robust and accurate radiative transfer model for spherical particles –
and the AART theory usingB and gG relevant for spheres (1.25 and0.79,
respectively), and a SSA of 16.4m² kg−1. These albedo differences yield
a relative error of ≈ 1% in the (B, gG) computations (≈ 0.02 and ≈ 0.007,
respectively), which we consider negligible. These expressions remain
thus valid in the limit of low absorption, which is globally true in the
visible and NIR spectral region (400 to 1400nm).

In the RSRTmodel we compute the albedo α as the ratio between
the number of photons escaping the semi-infinite snowpack with an
upward direction and the total number of photons launched. Using a
collection of monodisperse spherical particles, the spectral relative
error between albedos computed with RSRT and those predicted by
the Mie+DISORT model was lower than 3% in the 400 to 1200nm
wavelength range (slightly higher in the 1200 to 1400nm range -
Supplementary Fig. 6). The asymptotic flux extinction coefficient ke is
computed counting the intensity carried by the photons passing
through a given horizontal plane z. This intensity shows anexponential
decrease with depth, from where we fit a Beer-Lambert law (i.e. I(z) ≃
I(z = 0) exp(-ke z)) to obtain ke and eventually compute B and gG with
Eqs. 4, 5. The modeling uncertainty of α and ke is treated here with a
Bayesian framework.

Bayesian treatment of uncertainties
To ensure the accuracy of the computed optical shape parameters
with the macroscopic method, we implemented a Bayesian model to
quantify the uncertainties. Two optical quantities are derived from the
ray-tracing simulations: (i) the albedo, and (ii) the flux extinction
coefficient ke. These unknown quantities are then described using
some known probability distributions (named priors), which are
updated using Bayes’ theorem, a process called inference. The result-
ing posterior distribution provides an estimation of the albedo and ke
modeling uncertainties78.

Here, for each simulation we describe the prior distribution of
albedo with a normal distribution Ɲ (μ, σ2), with µ being the computed
albedo and σ = 1/√N. For ke, it is less direct. The probability of finding a
photonexponentiallydecreaseswith depth z, sowecould describe this
as a Bernoulli process. Consequently, the prior distribution of
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observing n photons at a certain depth z is given by a Binomial dis-
tribution ℬ(n, p), with p = exp(-kez).

The inference is then performed bymeans of a Python package79.
To obtain the posterior estimates, the model fitting is based on sam-
ples drawn from the posterior distribution using Markov ChainMonte
Carlo (MCMC) methods. In particular, a No-U-Turn Sampler (NUTS) is
implemented here (8000 samples). Instead of using only the max-
imum likelihood estimation, all the posterior estimations of both
albedo and ke are then introduced in Eqs. 4, 5 to obtain a full dis-
tribution of the optical shape parameters B and gG (Supplemen-
tary Fig. 1).

B and gG computation: the geometric method
We also implemented a more direct approach (called geometric
method) where the geometric definition of the shape parameters is
computed by means of ray-tracing from the actual snow micro-
structure. This method relies only on the geometric optics approx-
imation. The absorption enhancement parameter B can be defined by
the lengthening of the photon path in the ice phase due to internal
reflections and refraction with respect to strictly straight lines56. The
asymmetry parameter (i.e. gG in this geometrical optics framework) is
defined by the scattering phase function80,81, and is expressed as:

gG =
1
2

Z 1

�1
d cosΘð Þ cosΘp Θð Þ ð6Þ

with Θ the scattering angle and p(Θ) the scattering phase function,
normalized as:

1
2

Z 1

�1
d cosΘð Þp Θð Þ= 1 ð7Þ

In the RSRT model, in order to compute the scattering phase
function, we record the incident and outbound ray direction when
entering and going out the ice phase, respectively. The geometric
asymmetry parameter gG is directly deduced from Eq. 6.

Relating the optical shape parameters to the snow single-
scattering properties
The two optical shape parameters, B and gG, can be used in climate
modeling. The first step would be to use them to calculate other fun-
damental snow optical properties, such as the single-scattering albedo
ω and the asymmetry parameter g. Defining the single-scattering co-
albedo (1 - ω) as the ratio of absorption to extinction coefficients, and
following the formalism developed in40 (Eqs. (1–6)), we can relate B to
ω by:

1� ωð Þ=Bγ V
2Σ

ð8Þ

where the snow SSA can be introduced by using SSA = 4Σ / (Vρice):

1� ωð Þ=Bγ 2
SSAρice

ð9Þ

The asymmetry parameter g is simply the average of the geo-
metric and the diffraction terms (gG and gD, respectively). In this fra-
mework, where the wavelength is small enough compared to the
particles, diffraction is mainly forward (i.e. gD ≈ 1), so that:

g =
gG + 1
2

ð10Þ

For more advanced models, g can be used to parameterize the
phase function. For instance in DISORT82, that uses the Legendre

polynomial decomposition of the phase function, g appears to be the
coefficient of the first order polynomial.

For models that only require the broadband value of the snow
albedo, the values of B and gG found here for natural snow could be
used in snow radiative transfer models that rely on such parameters
(e.g. TARTES40) to eventually derive an updated snow albedo
parameterization83,84.

Estimation of temperature uncertainty reduction
In8, it was found that if the shape spans the range from spheres to the
Optimized Habit Combination (OHC), the global annual-mean air
temperature varies by 1.17 K. Since the snow albedo depends on the
ratio Γ = B / (1 - gG), in order to estimate the reduction of the uncer-
tainties related to the optical shape of snow in climate modeling, this
quantity and its variations for natural snow are evaluated and com-
pared to those in8.

Using the values for the sphere (B = 1.25, gG = 0.79) and the values
for the OHC (B ≈ 1.62, gG ≈0.56 -64), the Γ range explored by8 is:

ΓR€ais€anen =
Bsph

1� gG
sph

� BOHC

1� gG
OHC

=2:27 ð11Þ

In the present study, we obtained a reduced range for natural
snow. B can be considered constant and equal to 1.7, and gG varies
mainly between0.62 and0.68 (0.65 ± 0.03 - Fig. 2). If we use our values
instead of those for the sphere and the OHC, the Γ range explored in
this study is:

ΓRSRT =
Bsnow

1� gG
snow,upper

� Bsnow

1� gG
snow,lower

=0:84 ð12Þ

From these values we conclude that the shape uncertainty is
reduced by a factor ΓRäisänen/ΓRSRT ≈ 3. Assuming linear sensitivity of
global temperature to albedo and linear dependency between albedo
and Γ (valid for small perturbations), the temperature uncertainty is
reduced then from 1.17 K to 0.43 K.

Method limitations
Snow microstructure.
(1) Our results are based on a finite set of snow images. Although

meant to be representative of the diversity of snow, it is limited to
33 images, so that different B and g values cannot be ruled out for
very peculiar, under-represented snow morphologies.

(2) Note that only pure snow, i.e. without light-absorbing particles
(LAPs), is considered in this study. This is due to the fact that the
size distribution of dust particles is much lower than the
resolution limit of our X-ray tomography images (a few µm). A
recent study showed the feasibility of capturing the motion of
dust particle aggregates in dry snow85, which could potentially
open the way to determine the impact of LAPs on the optical
properties of snowby ray-tracing.Work is underway to implement
this feature in our ray-tracing model.

Ray-tracing model.
(1) Wave properties of light (diffraction and polarization) are not

considered in our ray-tracing model. However, several studies
showed that these geometric optics simplifications do not
prevent to correct simulate snow reflectance16,30,74,86.

(2) Some numerical errors may occur with the most complex snow
microstructures (mainly corresponding to fresh snow). This is
due to the resolution limit of our current imaging technique,
that fails to resolve the most detailed features of such micro-
structures. This leads to slight artifacts in the mesh generation
process and in turn may induce some errors in the photon-
tracking method. This is particularly true for the longest photon
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paths, at the shortest wavelengths, when the ice absorption is
extremely weak.

(3) The definition of a single-scattering event in this study slightly
differs fromwhat is typically assumed for unconnected particles41.
Here, a single-scattering event ends when the ray first exits the ice
phase (including reflection at the entrance), whereas in the
common definition a ray may enter and exit several times if the
particle is concave, before finally escaping the particle. Unfortu-
nately, this common definition requires extracting independent
particles from 3D images, which is somewhat arbitrary, since the
ice phase is usually mostly connected. Individual snow grains can
however be defined as zones separated by regions of potential
mechanical weakness (e.g.87) though these individual snow grains
are still connected by ice. The surface area of these ice-ice
contacts is nevertheless small compared to the ice-air interface
area66. In conclusion, for natural snow, and in order to use the
snow microstructure images as is, this uncommon but pragmatic
definition of a single-scattering event was used here in the
geometric method to derive gG.

Model uncertainties.
(1) The B and gG values presented in the text and figures with the

macroscopic method correspond to the mean values of the
resulting B and gG distributions. Their dispersion is usually small,
with a mean standard deviation over the whole dataset and the
600–1200nmwavelength range σ of 0.02 and 0.004 for B and gG

estimations, respectively. For B it is therefore unlikely that the
conclusion B = n2 is affected (Supplementary Fig. 1). The same
applies to the estimation uncertainty of gG, which is also con-
siderably smaller than the differences between natural snow and
the considered geometric shapes.

(2) In relation with the precedent limitation about the modeling
uncertainties, the macroscopic method is less accurate at the
shortest and longest wavelength range (400–600 nm and
1200–1400 nm, respectively). Below 600nm, the albedo compu-
tation needs to be extremely accurate to derive a precise estimate
of the (B, gG) parameters, which is very computation-costly with a
Monte-Carlo approach. This happens because the snow albedo α
in this spectral region is close to 1, and in the limit of α ≈ 1, the ln
(α) dependence becomes very close to zero and in particular, a
slight underestimation of the albedo (likely due to the numerical
cutoff of the photons) leads to a large overestimation of B
(Supplementary Fig. 1). Above 1200 nm, the limitation comes
from the underlying asymptotic radiative transfer theory that is
only valid in the low absorption limit, which might not be fully
respected at these longerwavelengths. However, it is important to
note that the geometric method still yields B = n2 below 600nm
and above 1200 nm. For longerwavelengths, the geometric optics
approximation (where particles need to have dimensions much
larger than the incident wavelength), limits as well the geometric
method. To summarize, our results are valid over the 400 to
1400nm range, which encompasses the most important part of
the solar spectrum (≈ 85% of the solar irradiance at the surface is
within this range).

(3) In the macroscopic method, some very small uncertainties in the
(B, g G) computation might come from the input macroscopic
quantities (density and SSA). In particular, B relies on the snow
density ρ (Methods, Eq. 4), and g G relies on both ρ and SSA
(Methods, Eq. 5). These quantities can be estimated with a 2%
accuracy88. Propagating this uncertainty into the equations, this is
equivalent to errors of 0.03 and 0.02 in B and gG, respectively.
Moreover, our computed ρ and SSA values compare well to
measurements over the voxelized microstructure images in32,
with similar accuracy. However, it is important to note that the
geometric method, which does not suffer from these

uncertainties in the inputmacroscopic variables, yields equivalent
results to the macroscopic method.

Data availability
The generated geometric shapes have been deposited in the PerSCIDO
platform and are available from https://doi.org/10.18709/perscido.
2023.06.ds392. Source data are provided in this paper.

Code availability
The simulation results and codes to generate the figures have been
deposited in the PerSCIDOplatform and are available from https://doi.
org/10.18709/perscido.2023.06.ds392. The ice refractive index is
computed with the snowoptics library available from https://github.
com/ghislainp/snowoptics (last access: 16 June 2023) and https://doi.
org/10.5281/zenodo.3742138.
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