Impact of fog microphysical properties on its radiative properties

Student in intership for 2 months: Veau Armand

<u>Tutors</u> : Libois Quentin Burnet Frédéric Costabloz Théophane

Context

Numerical weather prediction models have difficulty in correctly predicting the formation and dissipation of fog.

LW cooling and SW heating drive the life cycle of radiative fog.

- Radiative cooling of the surface by LW emission initiates radiative fog then LW radiation drives the fog development.
- At sunrise, SW radiation initiates the dissipation by evaporating the dew and the fog droplets at the surface.

Radiation-fog interactions are controlled by the optical properties of fog droplet's themselves driven by fog microphysics. There are several reasons why the radiative properties of fog can be poorly simulated:

- Wrong estimation of microphysical properties (e.g. LWC or droplets concentration).
- Wrong estimation of optical properties (the latter being parameterized in atmospheric models).

Figure 1 :Key stages of radiation fog, from, Li & al, , 2023

Objectives

What determines the radiative properties of fog ?

- Use a radiative transfer code to simulate the SW/LW radiation at the surface based on the measured microphysical properties and compare with the flux measured at the surface.
- What fog physical properties primaly drive surface radiation?

Are the radiative properties used in Meso-NH satisfying ?

- Compare the optical properties based on measurements with the optical properties using as parameterisations in the Meso-NH atmospheric model (Lac et al., 2018).
- Develop a parameterisation based on SOFOG3D observations to evaluate if a better representation of fog radiative properties can improve the model prediction.

Optical properties

Effective diameter defined as the ratio of 3rd to 2nd moment of the distribution:

$$D_{eff} = \frac{\sum_j N_j d_j^3}{\sum_j N_j d_j^2}$$

Radiative closure

Case study

Selection of a case study:

- Relative sationnary conditions
- Vertical profiles through the whole fog layer
- SW measurements with smooth evolution

What fog physical properties primaly drive surface radiation?

25 vertical profiles are shown in the figure from 3 POI 6,11,14.

The objective was to determine if the optical thickness was controlled by the effective radius or by the LWP.

Optical depth is primarily driven by LWP

K parameter

In numerical models, the effective radius is calculated as follows:

$$r_{eff} = \left(\frac{1}{k}\right)^{1/3} \left(\frac{3LWC}{4\pi\rho_w N}\right)^{1/3}$$

k is a shape parameter of the distribution. It can be calculated from a fixed distribution or the models use fixed values introduced by Martin et al, 1994 of 0.67 over land and 0.80 over ocean.

K parameter

For POI 6, 11 and 14, the graph shows the value of the k-parameter as a function of the optical thickness.

Each point is calculated with a linear regression as shown before.

The variability of the k parameter is significant, with values ranging from 0.4 to 1.

This factor can therefore be a source of improvement for fog prediction models that use a fixed value.

E. Jahangir et al ., Uncertainty of SW Cloud Radiative Effect in Atmospheric Models Due to the Parameterization of Liquid Cloud Optical Properties

SSPs

550 nm

the black curves represent the characteristic SSPs used in radiative transfer codes for spherical mie droplets with a gamma size distribution.

The other curve also represents the SSPs, but calculated using data from the SOFOG3D campaign.

Mass extinction coefficient

conclusion and perspectives

Preliminary study of the SOFOG3D campaign shows :

- k parameter and the optical properties can be improved in the models.
- Radiation at the surface is driven by the LWP

Perspectives:

- Radiative closure.
- Implementing SOFOG3D optical properties in ecRad.
- Meso-NH simulations of fog with updated optical properties and correct "k" value.

Fin de la présentation

Thank you for your attention