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Abstract. With the worldwide development of the solar en-
ergy sector, the need for reliable surface shortwave down-
ward radiation (SWD) forecasts has significantly increased
in recent years. SWD forecasts of a few hours to a few days
based on numerical weather prediction (NWP) models are
essential to facilitate the incorporation of solar energy into
the electric grid and ensure network stability. However, SWD
errors in NWP models can be substantial. In order to char-
acterize the performances of AROME in detail, the oper-
ational NWP model of the French weather service Météo-
France, a full year of hourly AROME forecasts is compared
to corresponding in situ SWD measurements from 168 high-
quality pyranometers covering France. In addition, to clas-
sify cloud scenes at high temporal frequency and over the
whole territory, cloud products derived from the Satellite
Application Facility for Nowcasting and Very Short Range
Forecasting (SAF NWC) from geostationary satellites are
also used. The 2020 mean bias is positive, with a value of
18 W m−2, meaning that AROME on average overestimates
the SWD. The root-mean-square error is 98 W m−2. The sit-
uations that contribute the most to the bias correspond to
cloudy skies in the model and in the observations, situations
that are very frequent (66 %) and characterized by an annual
bias of 24 W m−2. Part of this positive bias probably comes
from an underestimation of cloud fraction in AROME, al-
though this is not fully addressed in this study due to the lack
of consistent observations at kilometer resolution. The other
situations have less impact on SWD errors. Missed cloudy
situations and erroneously predicted clouds, which gener-
ally correspond to clouds with a low impact on the SWD,
also have low occurrence (4 % and 11 %). Likewise, well-
predicted clear-sky conditions are characterized by a low
bias (3 W m−2). When limited to overcast situations in the

model, the bias in cloudy skies is small (1 W m−2) but results
from large compensating errors. Indeed, further investigation
shows that high clouds are systematically associated with a
SWD positive bias, while low clouds are associated with a
negative bias. This detailed analysis shows that the errors
result from a combination of incorrect cloud optical prop-
erties and cloud fraction errors, highlighting the need for a
more detailed evaluation of cloud properties. This study also
provides valuable insights into the potential improvement of
AROME physical parametrizations.

1 Introduction

In the context of global warming, the European Union’s
Green Deal calls for at least 45 % of energy to come from re-
newable energy sources (RESs) by 2030. This is expected to
reduce greenhouse gas emissions by 55 % compared to 1990
levels (https://energy.ec.europa.eu/topics/renewable-energy/
renewable-energy-directive-targets-and-rules/
renewable-energy-targets_en, last access: 25 April 2023).
The share of RESs has already increased significantly in
Europe and worldwide over the last decade (International En-
ergy Agency, 2019). In France, in 2021, 13 067 MWp (MW
peak) of solar photovoltaic (PV) generation capacity was in-
stalled (which corresponds to the potential production under
standard test conditions), and 2687 MWp was added in 2021
(Réseau de transport d’électricité, 2021). Solar energy covers
3.1 % of the French annual electricity consumption (https:
//bilan-electrique-2021.rte-france.com/production_solaire/,
last access: 25 April 2023). This highlights that solar energy
is a key element in moving to a more sustainable energy
system.
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However, solar energy production is highly dependent on
weather conditions, especially clouds, which are responsi-
ble for its very high spatiotemporal variability (Widén et al.,
2015; Antonanzas et al., 2016). This variability is an issue
for the planning of solar energy production and for the over-
all stability of the electric grid, which requires a balance be-
tween supply and demand (Antonanzas et al., 2016; Betti
et al., 2021). To deal with that, accurate forecasts, mainly
for surface shortwave downward radiation (SWD), are essen-
tial. Different forecasting horizons are relevant for the solar
energy sector, ranging from minutes to months ahead (Das
et al., 2018; Antonanzas et al., 2016; Raza, 2016; Betti et al.,
2021). Very short term forecasts, covering horizons from sec-
onds to 1 h, are important for power smoothing, real-time
electricity dispatch and the optimization storage. Short-term
forecasts, from 1 h to several days, are necessary for unit
commitment, scheduling and dispatch of electrical power,
and also the enhancement of the security of grid operation.
Medium-term forecasts, from 1 week to 1 month, are useful,
for example, for scheduling maintenance. Long-term fore-
casts, from 1 month to 1 year, are useful for planning elec-
tricity generation, transmission and distribution aside from
energy bidding and securing operations (Das et al., 2018). In
the much longer term, in particular in the context of global
warming, estimating the future potential of variable renew-
able resources, including solar, and the impact of temperature
on electricity demand is essential to provide an assessment of
future energy systems (Dubus et al., 2022).

Depending on the time horizon, different forecasting tech-
niques are used (Widén et al., 2015; Raza, 2016; Das et al.,
2018; Betti et al., 2021). For instance, for intra-hour fore-
casts, the use of two or more all-sky imagers (ASIs) or-
ganized in a network has proven successful (Nouri et al.,
2019b, a; Logothetis et al., 2022; Chu et al., 2022). Forecast-
ing techniques based on historical data, including machine
learning approaches, can also be effective for the very short
term (Das et al., 2018). For short-term forecast up to 6 h hori-
zon, satellite-based methods that extrapolate cloud location
using cloud-motion vectors can be effective (e.g., Cros et al.,
2020). From hours to a few days, physical methods based
on weather forecasts produced by numerical weather pre-
diction (NWP) models are the most common (Widén et al.,
2015; Antonanzas et al., 2016; Betti et al., 2021). As a con-
sequence, these NWP models, which solve the mesoscale
atmospheric dynamics and account for small-scale physical
processes, are an essential element for the management of
power systems involving a significant amount of solar en-
ergy.

However, the performance of NWP models in predicting
SWD remains limited. As an illustration, we compared the
1 d SWD forecasts of AROME (Seity et al., 2011), the oper-
ational NWP model of the French weather service Météo-
France, to hourly averages from the national pyranometer
network comprising 168 stations. For 2020, the mean annual
bias and root-mean-square error (RMSE) are respectively 18

and 97 W m−2, for a mean SWD of 340 W m−2. This shows
that the errors can be significant, with correspondingly high
uncertainties in the PV production forecasts.

Nevertheless, until now, SWD errors have not been a pri-
ority for weather forecasts produced by NWP models, since
they did not have radiative scores, whereas they have been
particularly studied in climate models. Growing interest from
various end users, including the PV community, is now high-
lighting these substantial SWD errors and the need for better
forecasts.

For example, Nielsen and Gleeson (2018) evaluated the
SWD forecasts of the NWP model HARMONIE-AROME
in Denmark with a pyranometer network and found a nega-
tive bias for days with optically thick clouds, which they at-
tributed to an excess of cloud water in the model thick clouds.
This approach is interesting because it allows a model to be
evaluated over a large domain and a long period, but it does
not distinguish between cloud regimes such as cloud altitude
or phase, which could help better understand SWD errors.
Köhler et al. (2017) had a different approach, allowing for
a distinction by cloud regime. They analyzed the PV power
forecast errors of the NWP model COSMO-DE in Germany
for 2013 and 2014 and highlighted that nearly one-third of
the 100 d with the largest SWD errors was associated with
fog and low stratus events. However, while this study demon-
strated the need for more reliable forecasts of low cloud
cover, it was limited to 100 d and the cloud regimes were
analyzed manually, which did not allow a systematic distinc-
tion of cloud situations. Other more systematic studies relied
on highly instrumented sites with lidars and radars to detect
the presence of clouds (Tuononen, 2019), or to automatically
classify clouds based on their base and thickness (Ahlgrimm
and Forbes, 2012). These approaches are useful for deter-
mining how cloud regimes and cloud physical parameters
contribute to SWD errors in NWP models. More specifically,
Tuononen (2019) showed that low and mid-level clouds in
the Integrated Forecast System (IFS) model in Helsinki are
associated with a positive bias of SWD when the liquid wa-
ter path (LWP) is low. They showed that an overestimation of
SWD correlates with an underestimation of cloud fraction in
the IFS model. Similarly, Ahlgrimm and Forbes (2012) es-
timated that at the ARM Southern Great Plains (SGP) site,
in overcast low cloud conditions, the frequency of low-LWP
clouds was overestimated, and the frequency of high-LWP
clouds was underestimated in the IFS model.

These highly instrumented sites also allow other parame-
ters to be evaluated in the absence of clouds. For instance,
at the ARM SGP site, Weverberg et al. (2018) analyzed the
contributions of surface albedo, surface longwave emission,
integrated water vapor, aerosols and cloud properties in nine
global circulation models and found that cloud errors gener-
ally dominate SWD errors. Likewise, Morcrette (2002) found
an underestimation of water vapor absorption and errors in
humidity and in aerosol concentrations in the IFS model.
Rieger et al. (2017) also reported large SWD errors during
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a Saharan dust outbreak over Germany in the ICON NWP
model.

While most studies investigating the causes of SWD errors
in NWP forecasts have used highly instrumented sites where
detailed, high-frequency observations are available, this ap-
proach remains limited to a single site. In our study, we aim
to develop a general method to evaluate SWD forecasts from
NWP models and identify the situations that contribute most
to errors. The method should allow a large domain to be dealt
with, with a sufficient number of reference observations, as in
Nielsen and Gleeson (2018). Hence, it should not be limited
to a single supersite because such a site could be unrepresen-
tative of the whole domain. The method should also allow us
to go further in identifying cloud errors. Our strategy is also
to explore a wide variety of meteorological situations, which
is possible by evaluating the model throughout the year and
not only during a short period where specific seasonal errors
could dominate the overall behavior. Finally, our method is
intended to be general and systematic enough to be applied
to any NWP model, relying only on SWD observations and
making extensive use of cloud satellite products.

In this paper, our evaluation methodology is applied to
AROME at 1.3 km horizontal resolution. For this purpose,
a full year of 1 d hourly forecasts is compared with in situ
SWD measurements from the pyranometer network oper-
ated by Météo-France. The cloud products derived from the
Satellite Application Facility for Nowcasting and Very Short
Range Forecasting (SAF NWC) from geostationary satellites
are used to classify cloud scenes at high temporal frequency
and over the whole territory.

The paper is organized as follows. Section 2.1 presents the
SWD measurements and the satellite products, as well as the
AROME forecasts used in this study. The evaluation method-
ology is then detailed in Sect. 2.2. Section 3 presents the re-
sults, first in terms of cloud occurrence and then in terms of
cloud situations. The results are then put into perspective in
Sect. 4, where the limitations of the observations and poten-
tial sources of error in AROME are discussed.

2 Data and methods

2.1 Observation and modeling data

2.1.1 AROME forecasts

AROME (Applications de la Recherche à l’Opérationnel à
Méso-Echelle) is a limited-area non-hydrostatic model de-
veloped by the French weather service, Météo-France (Seity
et al., 2011; Brousseau et al., 2016). The French operational
configuration of AROME covers a large part of western Eu-
rope and has a horizontal resolution of 1.3 km. The number
of model pixels is 1525× 1429, and the number of vertical
levels is 90. The time step is 50 s. The lateral boundary condi-
tions are provided by ARPEGE (Action de Recherche Petite

Echelle Grande Echelle), the French operational global NWP
model.

The AROME model physical package is derived from the
Meso-NH model (Lafore et al., 1998; Lac et al., 2018). The
shallow convection is parametrized using the EDMF (Eddy
Diffusivity Mass Flux) approach (Pergaud et al., 2009).
The microphysical scheme is the one-moment mixed ICE3
scheme, completed with a subgrid condensation scheme pre-
sented in Riette and Lac (2016). The turbulence parametriza-
tion considers a prognostic turbulent kinetic energy (TKE)
equation from the Cuxart et al. (2000) scheme in a 1D mode
and is closed with the Bougeault and Lacarrere (1989) mix-
ing length. The radiation parametrization comes from the IFS
model and comprises the six spectral bands’ shortwave radi-
ation scheme of Fouquart and Bonnel (1980) and the Rapid
Radiative Transfer Model for longwave radiation (Mlawer
et al., 1997). AROME is coupled online with the SURFEX
(externalized land and ocean surface platform) model, which
describes the surface fluxes and the evolution of four types
of surfaces: natural, town, inland water and ocean (Masson
et al., 2013).

In this study, 24 h operational hourly forecasts starting
at 00:00 UTC are evaluated, considering the average hourly
SWD and average hourly total cloud fraction forecasts. We
also use the average hourly cloud fraction in slices across
the tropospheric column, located at pressure levels 1013–
785 hPa (∼ 2 km), 785–450 hPa (∼ 6 km) and 450 hPa–top of
the model. This study focuses on the year 2020 (correspond-
ing to the AROME cycle 43t1). This year was chosen be-
cause it corresponds to a recent and continuous period with-
out major changes in the AROME operational model.

2.1.2 Observations of shortwave downward radiation

Within the operational observation network of Météo-
France, 221 pyranometers in mainland France provide hourly
means of SWD. Among them, only 168 were used during
the whole year 2020 and considered of sufficient quality.
Their locations are shown in Fig. 1. Practically, measure-
ments taken under critical environmental conditions (e.g.,
with significant local masks or in mountainous regions above
1000 m) or with time series showing anomalies have been
discarded to avoid introducing observational errors in the ref-
erence measurements.

2.1.3 Cloud satellite products

In order to identify the presence and type of clouds at high
frequency and over the whole AROME domain, cloud satel-
lite products developed by the NWC EUMETSAT SAF are
used (LeGleau, 2019; LeGléau and Kerdraon, 2019). Over
France, the horizontal resolution is around 5 km, and the tem-
poral frequency is 15 min, so there are four values for 1 h.
The cloud mask product gives discrete values: 0 for no cloud
and 1 for clouds. The cloud type is a classification among 15
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Figure 1. Localization of the 168 pyranometers used from the net-
work operated by Météo-France.

different classes: 4 corresponding to cloud-free scenes and
11 corresponding to cloud scenes (see Sect. 2.2.3).

2.2 Methods

2.2.1 Model–observation comparison of shortwave
downward radiation

We compare hourly means of SWD from the model and
from observations. To avoid grazing angles under which
pyranometer measurements can be inaccurate, only the di-
urnal values corresponding to a cosine of the solar zenith an-
gle (SZA) greater than 0.1 (equivalent to a SZA less than
84.3◦) are considered. To avoid double-penalty issues, usual
for high-resolution models like AROME that are unlikely to
form clouds at exactly the right place and time (Amodei and
Stein, 2009; Stein and Stoop, 2019), we do not necessarily
select the closest point, unlike most SWD evaluation stud-
ies, but instead extract it in the vicinity of the observation
point. In practice, a neighborhood strategy is set up that al-
lows the selection of a model point with a forecast SWD
value close to the observed value in a small square domain
centered on the observation point. While such a neighbor-
hood strategy may seem unsatisfactory to PV producers who
are concerned about SWD at the exact location of the PV
plant, these users should keep in mind that NWP forecasts
are not expected to be accurate at individual grid points. We
sort the absolute model–observation errors in this neighbor-
hood in ascending order and select the 10th percentile value.
This strategy avoids the selection of a point very close to the
observation by chance and ensures that the method is not too
sensitive to the size of the neighborhood. Here, the size of
the neighborhood is set to 5× 5 model pixels, which means

that the point with the second smallest difference (among 25
values) is retained for each observation. The neighborhood
size is chosen to be comparable to the satellite pixel size (see
Sect. 2.2.2).

The error metrics commonly used to evaluate the SWD
forecast errors are the mean error or bias (ME) and the root-
mean-square error (RMSE). The ME describes systematic
deviations and provides information on the sign of error.
However, the ME is not sufficient to assess errors because of
compensation effects. The RMSE is more sensitive to large
errors and thus particularly suited to the electricity market,
where large errors are much more critical than small errors
(Perez et al., 2013; Betti et al., 2021). The RMSE can be di-
vided into systematic errors (MEs) and unsystematic errors
or standard deviation of errors (SDE), as described in Widén
et al. (2015):

RMSE2
= SDE2

+ME2. (1)

In practice, while it can be relatively easy to correct the bias
in a model, with a simple tuning or a statistical adjustment,
reducing SDE is generally more challenging.

2.2.2 Cloud occurrence classification

To identify cloud presence in the observations, we use the
satellite cloud mask. As AROME forecasts are only available
as hourly means, comparable satellite products at hourly res-
olution are computed. Clear-sky conditions are considered
for a pyranometer location (i.e., the satellite pixel includ-
ing the location of the pyranometer) at hour H when the
last four consecutive observations report no clouds. To iden-
tify clear-sky conditions in AROME, the hourly mean total
cloud fraction is computed as the average over the neighbor-
hood defined in the previous section. A threshold value of
2 % is fixed: if the hourly mean total cloud fraction is larger
than this value, the hour is considered cloudy and clear sky
otherwise. Once cloudy skies are identified in both observa-
tions and the model, we set up a contingency table, follow-
ing Tuononen (2019): “hit” when clouds are present in the
model and in the observation, “false alarm” when clouds are
present in the model only, “miss” when clouds are present in
the observation only, and “correct negative” when both ob-
servations and the model agree on clear-sky conditions.

2.2.3 Cloud regimes and cloud types

In the model, to further discriminate between different
cloudy situations, we use a modeled cloud regime classifi-
cation similar to Weverberg et al. (2018). In AROME fore-
casts, the cloud fraction for each of the three distinct vertical
slices is used. For each region, a 2 % threshold, similar to
the threshold value for cloud occurrence, is set to distinguish
cloudy and clear-sky conditions. The value of this threshold
is the same as the threshold value for cloud occurrence classi-
fication (see Sect. 2.2.2). Seven cloud regimes (CR1 to 7) are
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Figure 2. Modeled cloud regime classification.

defined from the combination of these cloudy layers. When
the liquid water content is larger than 10−5 kg kg−1 at the
first vertical level of the model, the cloud regime is set to
CR0, which corresponds to fog. These eight cloud regimes
are depicted in Fig. 2. Table 1 summarizes the different nam-
ing used to describe groups of cloud regimes used in this
article.

In the observations, to further distinguish cloudy skies,
we use a cloud type classification based on the cloud type
satellite product developed by SAF NWC and described in
Sect. 2.1.3. As the values are instantaneous and discrete, we
select the values at H − 30 min. The 11 cloud types of the
product are merged into 6 (Table 2), allowing an easier com-
parison with model outputs.

Figure 3 shows the monthly relative frequency for each
cloud regime (respectively type) and for the clear skies in the
model (respectively in the satellite product) over the pyra-
nometer locations and when cos(SZA) > 0.1. In the model,
the frequency of clear skies is 22 % against 30 % in the satel-
lite product, suggesting that the model predicts too many
clouds, and/or some optically thin clouds are not detected by
the NWC SAF product, which is a known caveat of passive
sensors (Sun et al., 2011). AROME predicts fewer low clouds
(23 % of CR0+CR1+CR4) than satellite observations (29 %
of LCs). In addition, the relative frequency of observed frac-
tional clouds is higher in summer than in winter, while low
clouds are overall less frequent in spring and summer, high-
lighting seasonal cycles in the observations that do not have
obvious equivalents in the model. We can also note that the
model predicts too many thick clouds with a high cloud top
(29 % of CR5+CR7) compared to the observations (9 % of
HCs). Note that the sum of the relative frequencies of clear
skies and all cloud regimes is not exactly equal to 1 in Fig. 3a.
This is because there are situations with very low relative fre-
quencies with a total cloud fraction larger than 2 % (implying
that the scene is considered cloudy) but with a cloud fraction
for each of the three vertical slices of the troposphere lower
than 2 % (implying that it is not associated with any CR).

3 Statistical analysis

The method presented in the previous section is now ap-
plied to evaluate the AROME SWD forecasts, starting with
an overall evaluation before going into detail.

3.1 Overall evaluation: clear-sky index histograms

To begin with, we use the clear-sky index (CSI), which is
defined as

CSImod =
SWDmod

SWDclear,mod
; CSIobs =

SWDobs

SWDclear,mod
, (2)

with SWDmod the SWD in the model, SWDobs the SWD in
the observations, and SWDclear,mod the theoretical SWD un-
der clear-sky conditions from the model. The histograms of
CSI are used to point differences in SWD between AROME
and observations (Fig. 4), similarly to what Nielsen and Glee-
son (2018) did to evaluate the NWP model HARMONIE-
AROME against the Danish pyranometer network. The CSI
roughly quantifies overall cloud transmittance, bearing the
signature of both cloud cover and cloud optical thickness.
Only values for which the SZA is less than 70◦ are con-
sidered to ensure that the CSI distribution is not affected by
measurement errors and model limitations at grazing angles.

In the observations the CSI can greatly exceed 1, as re-
ported by Nielsen and Gleeson (2018). This can be explained
by an underestimation of the model clear-sky SWD, which
can be due to a reduction in aerosol emissions over the last
decades (Wild, 2009), while the aerosol climatology used
in AROME is older (Tegen et al., 1997) and thus overesti-
mates present-day aerosol loadings. These values exceeding
1 can also be due to cloud enhancement effects (e.g., Guey-
mard, 2017), which occur under broken cloud conditions.
Such effects cannot be simulated with standard plane-parallel
radiative codes (Wissmeier et al., 2013). The few CSI val-
ues in the model exceeding 1 are unrealistic and are due to
the fact that the theoretical SWD under clear-sky conditions
from the model is slightly delayed compared to the SWD.
The CSI in the model is more frequently between 0.8 and 1
compared to observations (which may partly be due to the
lack of values exceeding 1 in the model), or less than 0.1,
and in contrast less frequently between 0.1 and 0.75. It sug-
gests that optically thick clouds are too thick, which agrees
with the excess of CR5 and CR7 pointed in Fig. 3. Inter-
estingly the CSI distributions are similar to those reported
by Nielsen and Gleeson (2018) with HARMONIE-AROME
(Bengtsson et al., 2017). Although these models share the
same code, the operational configurations rely on different
sets of parametrizations. It suggests that NWP model errors
are to some extent systematic over a wide range of situations.
The opposite behaviors in different ranges of CSI show that
errors in AROME are not limited to a systematic bias, which
could be easily corrected with a rough tuning. Instead, the
behaviors seem to depend on the cloud situation, which will
be investigated further in the following.

https://doi.org/10.5194/gmd-17-1091-2024 Geosci. Model Dev., 17, 1091–1109, 2024



1096 M.-A. Magnaldo et al.: Evaluation of shortwave radiation forecasts by AROME

Table 1. Table summarizing the different naming used to describe groupings of cloud regimes used in this article.

Low clouds Cloud regimes with clouds present in the lower vertical slices: CR0, CR1 and CR4

High clouds Cloud regimes with clouds present in the upper vertical slices (except CR6): CR3, CR5 and CR7

Geometrically
thin clouds

Cloud regimes with clouds present in only one vertical slice: CR1, CR2 and CR3

Geometrically
thick clouds

Cloud regimes with clouds present in two or more vertical slices (except CR6): CR4, CR5 and CR7

Table 2. Observed cloud type classification.

LC Low clouds, which include very low and low clouds

MC Mid-level clouds, which include mid-level clouds

SC Semi-transparent clouds, which include high semi-transparent thin clouds, high semi-transparent moderately thick
clouds, high semi-transparent thick clouds, high semi-transparent above low or medium clouds, and high semi-
transparent above snow/ice

HC High clouds, which include high opaque clouds and very high opaque clouds

FC Fractional clouds, which include fractional clouds

Others Fill values or when the cloud type product indicates no clouds unlike the cloud mask product

3.2 Attributing model errors to cloud occurrence

To go beyond Fig. 4, we now investigate how the different
cases of cloud presence defined in Sect. 2.2.2 contribute to
the overall errors. To this end we compute the relative fre-
quency, SWD bias and SDE for each of the four occurrence
cases. To identify the situations that contribute most to er-
rors, another metric is used: the contribution to the total bias,
which is the frequency-weighted bias. The sum of these con-
tributions equals the total bias. If a situation is associated
with a high bias but rarely occurs, it barely contributes to
the total bias. In contrast, a situation associated with a low
bias can significantly contribute to the total bias if it fre-
quently occurs. Figure 5a shows the monthly bias, frequency
and contribution to the total bias.

As expected, the bias is negative for the false alarm cases
(ranging from −5 to −25 W m−2), and positive for the miss
cases (with monthly biases up to 80 W m−2). The false alarm
cases are almost 3 times more frequent than miss cases (11 %
of false alarm cases and 4 % of miss cases during the year
2020), which is consistent with the higher clear skies fre-
quency in the observations pointed in Sect. 2.2.3 and sug-
gests that AROME predicts too many clouds or that some
clouds are not detected by the satellite. With a cloud fraction
threshold value of 10 %, the gap between the two frequen-
cies is reduced, but false alarm cases remain more frequent
(10 % of false alarm cases and 6 % of miss cases). The bias
is stronger for the miss cases than for the false alarm cases.
This suggests that clouds missed by AROME have more im-
pact on the SWD than those simulated in false alarm cases

or that some false alarm cases are actually hit cases with un-
detected clouds. When both the model and observations pre-
dict clear skies, the bias is much smaller, ranging from −10
to 10 W m−2, and is on average slightly positive during the
year. The hit cases represent 66 % of the situations and are
associated with significant biases up to 50 W m−2. Their con-
tribution to the total bias is the most important (16 W m−2,
for a total bias of 18 W m−2). Interestingly, the bias asso-
ciated with hit cases is invariably positive throughout the
year, showing a marked tendency of AROME to underesti-
mate the impact of clouds on the SWD. Figure 5b shows that
the SDE is also the strongest for the hit cases, with annual
values of 110 W m−2, compared to 50 W m−2 for the false
alarm cases, 95 W m−2 for the miss cases and 22 W m−2 for
the correct negative cases. Note that several tests were per-
formed by changing the neighborhood size (1 pixel and 10×
10 pixels), the cloud detection threshold (1 %, 5 %, 10 %) and
the SZA threshold (70◦), which did not qualitatively change
these results. Hence we consider these results are robust and
independent of the mentioned thresholds. To summarize, er-
rors mostly occur when clouds are present in the model and
in the observations, which is consistent with Weverberg et al.
(2018) and Tuononen (2019).

3.3 Attributing model errors to AROME cloud regimes
and satellite cloud types

In what follows, we provide a more physical overview of cor-
rect negative cases, false alarm cases and miss cases results.
Then we focus more extensively on the hit cases that con-
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Figure 3. Monthly relative frequency for each (a) cloud regime in AROME and clear skies (CS) and (b) cloud type in the satellite images
and clear skies (CS), over 2020 for the pixels including the pyranometers.

Figure 4. Clear-sky index distribution in the model and in the ob-
servations when SZA > 70◦ over 2020.

tribute most to SWD errors. To this end, we distinguish be-
tween situations in terms of cloud regimes in AROME or in
terms of the satellite cloud types, so that bias and SDE can
be attributed to these specific cloud situations.

3.3.1 Correct negative cases

Various factors can explain SWD errors for the correct nega-
tive cases. For example, Morcrette (2002) found a persistent
positive bias in clear sky that was attributed to an underes-
timation of gaseous absorption in the IFS water vapor spec-
troscopy, which is still the one used in AROME. Another
factor which can contribute to SWD errors in clear-sky con-
dition is relative to aerosols. In AROME, the aerosols are
prescribed by a monthly climatology (Tegen et al., 1997),
meaning that only the average seasonal cycle of aerosols is
captured, but the individual aerosol events are not accounted
for. Such events, for instance dust outbreaks, can result in
localized SWD attenuation of 40 %–50 %, as pointed out by
Kosmopoulos et al. (2017), so not taking them into account
can lead to significant SWD errors (Rieger et al., 2017).

To estimate the extent to which such a misrepresentation
of aerosols contributes to the errors of the correct nega-

Figure 5. (a) Monthly mean SWD bias (bar height, in W m−2) and
relative frequency (bar width) for each category during the year
2020: red for the hit cases, yellow for the false alarm cases, green
for the miss cases and blue for the correct negative cases. The total
contribution is the bar surface. (b) Monthly SWD standard devia-
tion of errors (SDE) for each category during the year 2020.

tive cases, we examine the correlation between SWD errors
and aerosol optical depth (AOD) errors, the latter being de-
fined as the difference between the climatological AOD from
AROME and the AOD estimated from Copernicus Atmo-
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sphere Monitoring Service (CAMS), a chemistry-transport
model that provides near-real time AOD forecasts and fully
captures aerosol-related events (Benedetti et al., 2009; Mor-
crette et al., 2009), interpolated to the AROME grid. Figure 6
shows the natural logarithm of the transmittance (defined as
T = SWD/SWDTOA with SWDTOA the SWD at the top of
the atmosphere) errors as a function of AOD errors divided
by cos(SZA) in the correct negative cases, as well as the lin-
ear regression line. Again, only values for which the SZA
is less than 70◦ are considered in order to avoid values of
SWDTOA that are too low.

As expected, a negative slope is obtained during the year
2020 with a value of −0.07 and also for each individual
month (not shown). The correlation coefficient is low, show-
ing a large variability in the data, with a value of −0.19 dur-
ing the year and less negative values in winter and higher
values in summer. However, throughout the year the p value
is very low, indicating a statistically significant relationship
between SWD errors and AOD errors. The low correlation
coefficient could be explained by the different factors men-
tioned above that explain SWD errors but mainly by clouds
which are not detected by cloud products but alter the SWD
(see Sect. 4.1.2). Using passive measurements for cloud de-
tection limits our study of aerosol errors because cloud detec-
tion errors influence clear-sky SWD errors at the first order.
A better cloud detection is required to identify real clear skies
in reality, as discussed in Sect. 4.1.2.

We do not extend further on these clear-sky cases which
have been treated elsewhere, notably Rieger et al. (2017),
who show an overall improvement of the PV-power fore-
cast during a Saharan dust event over Germany in the ICON
model when extended with modules accounting for trace
gases and aerosols and related feedback processes. More-
over, the Tegen climatology used in AROME is outdated, and
a more recent climatology such as the CAMS climatology
could reduce SWD errors, as implemented in the IFS (Bozzo
et al., 2020).

3.3.2 False alarm cases

False alarm cases correspond to clouds predicted by AROME
but not observed by the satellite. Here we study the type
of clouds present in AROME in such cases in more detail.
Figure 7a shows that the relative frequency for geometri-
cally thin clouds in AROME, designating cloud regimes with
clouds in only one vertical slice of the troposphere, is higher
when no clouds are detected than in the AROME total cloud
climatology (for instance 50 % vs 18 % for CR3; see Fig. 3a).
This suggests that some thin clouds (mostly high clouds) pre-
dicted by AROME are not physically realistic or are not de-
tected by the satellite. Regarding the biases, they are mostly
negative for most of the cloud regimes, except for CR3 for
a few months, CR3 having the lowest absolute bias through-
out the year. This also shows that some geometrically thin
high clouds may not be detected. The major contribution to

Figure 6. ln(SWD/SWDTOA) errors as a function of AOD errors
with the fit line during clear skies in the year 2020 when the SZA is
less than 70◦.

the total bias in false alarm cases is for geometrically thin
low clouds (CR1) which have a lower frequency than CR3
but a much larger bias throughout the year. Given the SWD
errors associated with CR1, it is likely that some are erro-
neously predicted by the model. In contrast, almost no geo-
metrically thick clouds (CR4, CR5 and CR7) are simulated
when no clouds are observed (5 % for CR4, 6 % for CR5 and
2.7 % for CR7), while they are predominant in the total cli-
matology (13 % for CR4, 11 % for CR5 and 28 % for CR7).
This is consistent with the fact that simulating thick clouds
in the absence of clouds is unlikely and that thick clouds
are less likely to be undetected. Note that the annual mean
SWD in the model for the false alarm cases (436 W m−2) is
much higher than the annual mean SWD in the model for the
hit cases (296 W m−2), suggesting that undetected simulated
clouds have on average less impact on the SWD than actually
observed clouds.

Around 4 % of the false alarm cases are fog, compared to
about 3 % of simulated clouds in total. In winter, there can
be up to 3 times more fog in the false alarm cases than in
the total AROME cloud climatology, suggesting that during
the day in winter, there is a lot of simulated fog, while no
cloud is detected. As fogs are largely present in the morning
(7.6 % in the morning and 0.5 % in the afternoon during the
year), this may be due to the delay in dissipation of AROME
fog highlighted by Antoine et al. (2023). In winter, the high-
est negative bias is for fog (minimum of −83 W m−2) with
a relatively high frequency, showing that the contribution of
fog to the bias is particularly important in winter and that
improving AROME fog forecasts is an important issue for
SWD errors.

3.3.3 Miss cases

As for the false alarm cases, the objective is to identify which
cloud types have been missed by AROME. Figure 7b shows
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Figure 7. Monthly bias (bar height) and relative frequency (bar
width) for (a) each cloud regime for the false alarm cases and
(b) each cloud type for the miss cases. The vignette of the cloud
regimes is inserted to facilitate the reading.

that the seasonal cycle is more pronounced than for the false
alarm cases. In winter, the relative frequency of low clouds
(LCs) in the miss cases is much higher (maximum of 74 %)
than for the observed climatology as a whole (41 %; see
Fig. 3b), while the opposite is true in summer with a min-
imum of 21 %. Figure 7b also shows that, as expected, the
bias for all cloud types is positive and that the main contribu-
tion to the bias for the year 2020 comes from LC, especially
in winter and autumn.

The annual relative frequency of fractional clouds (FCs) in
miss cases is the highest (47 %), especially in summer when
they are more frequent with a maximum of 67 %. Regardless
of the season, the relative frequency of FC in miss cases is
higher than in the total observed climatology (maximum of
27 %).

Few high clouds (HCs) are missed, with an annual relative
frequency of 1 % (13 % in the total observed climatology),
unlike semi-transparent clouds (SCs), which are often missed
with an annual relative frequency of 14 % (20 % of the total
observed climatology). The highest biases come from mid-
level clouds (MCs) (211 W m−2) and HCs (203 W m−2), but
due to their very low occurrence, their contribution to the
bias in miss cases is very small, in contrast to SC. Note that
the annual mean SWD in the observations for miss cases
(409 W m−2) is much higher than for hit cases (272 W m−2),

Figure 8. Monthly mean SWD bias (bar height, in W m−2) and rel-
ative frequency (bar width) for each (a) cloud regime and (b) cloud
type, during the year 2020 for the hit cases. The total contribution
is the bar surface.

Figure 9. Annual mean SWD bias for different AROME cloud frac-
tions and for each cloud type during the year 2020. The number
above each bar represents the frequency (in %) by cloud fraction
range for each cloud regime.

suggesting that the clouds missed by the model have, on av-
erage, a small impact on the observed SWD.

3.3.4 Hit cases: in all situations

We now focus on the hit cases, which are the most frequent
and contribute the most to the overall errors. We investi-
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gate how in these cases the errors depend on the AROME
cloud regimes and satellite cloud types. Figure 8a shows the
monthly bias and relative frequency as well as the contribu-
tion to the total bias for the hit cases over 2020. It appears
that AROME overestimates the SWD for almost all CRs, ex-
cept for CR0 in all the months and CR4 and CR7 in some
months. The largest positive bias is for CR3, with values up
to 93 W m−2. Figure 8b shows the same behavior for almost
all cloud types, except for FC. Such a positive bias could be
explained both by a systematic underestimation of the cloud
fraction and/or by an underestimation of the cloud optical
thickness. Since we do not have an estimate of the cloud frac-
tion, it is difficult to conclude. Indeed, the evaluation of the
cloud fraction at such high spatial and temporal resolutions
over a large domain remains a challenge.

To go further, Fig. 9 shows the bias for each cloud regime
and four ranges of forecasted cloud fraction. At low cloud
fraction (i.e., less than 10 %), the bias, in addition to being the
highest for almost all cloud regimes, is positive for all cloud
regimes. This is not surprising since when the cloud fraction
is low in the model, if the cloud fraction is not correct, it is
most likely to be underestimated, resulting in a positive bias.
For a high cloud fraction (more than 95 %), the bias remains
positive for CR2, CR3, CR5 and CR6, despite the fact that
in this case, if the cloud fraction is not correct, it is most
likely to be overestimated, which would lead to a negative
bias. This suggests that for these cloud regimes, errors are
not only governed by cloud fraction errors.

This preliminary analysis highlights errors that can be at-
tributed to cloud fraction errors. Since we do not have access
to a reliable cloud fraction observation for the AROME res-
olution and domain, we do not pursue the evaluation under
all cloudy conditions. Instead, from now on we focus on sit-
uations where the AROME cloud fraction is close to unity,
which means that positive biases at least cannot be attributed
to an underestimation of the cloud fraction.

3.3.5 Hit cases: in overcast situations

As explained above, we now focus on overcast situations.
In practice, we consider the hit cases for which the AROME
cloud fraction is larger than 95 %, which corresponds to 61 %
of the hit cases and 40 % of all the cases. The frequency of
overcast situations for each cloud regime is shown in Fig. 9
(black numbers in %). In practice, these proportions are
largely the same when the overcast threshold is set between
95 % and 99 %. The first effect of this overcast sub-selection
is to change the annual bias, leading to a nearly zero bias (1.1
compared to 24 W m−2 before). This suggests that part of the
overall positive bias may be due to errors in cloud fractions
or optical thickness that is too low under partial cloudiness.
In contrast, the SDE is barely reduced (101 vs 110 W m−2),
showing that the overcast cases still deserve attention and
that the nearly zero bias results from error compensations.

Figure 10. Monthly mean SWD bias (bar height, in W m−2) and
relative frequency (bar width) for (a) all modeled cloud regimes
and (b) all observed cloud types, in overcast situations, during the
year 2020. The total contribution is the bar surface.

In this section, we investigate how the errors vary with the
AROME cloud regimes and satellite cloud types.

We start by distinguishing these overcast hit cases in terms
of modeled cloud regime or observed cloud type in the satel-
lite classification. Figure 10a shows the 2020 monthly bias,
relative frequency and contribution to total bias.

When the situations are sorted according to the AROME
cloud regime, the high clouds (CR3 and CR5) are systemati-
cally associated with a positive bias throughout the year, with
values up to 100 W m−2. Since these two cloud regimes cor-
respond to 21 % of the cases, this results in a significant pos-
itive contribution to the bias. In contrast, the bias for the low
clouds (CR1 and CR4) is negative with a more pronounced
seasonal cycle, characterized by a stronger bias in summer up
to−80 W m−2. Fog cases are associated with negative biases
with an annual bias of−25 W m−2 and a higher frequency in
January. The annual bias is consistent with the already men-
tioned delay in fog dissipation and the optical depth that is
too thick, related to the excess of water content and droplet
concentration in the fogs simulated by AROME, as pointed
out by Antoine et al. (2023).

When satellite cloud types are used (Fig. 10b), again we
obtain a positive bias for HC, with values up to 70 W m−2; a
bias of variable sign for SC; and a persistent negative bias for
LC, with values up to −40 W m−2. The bias is always neg-
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ative for FC. This is consistent with the fact that this cloud
type probably corresponds to situations with a cloud frac-
tion lower than 100 %, meaning that the cloud fraction, if
not correct, is overestimated in AROME. Note that satellites
with passive instruments cannot detect low clouds when a
high cloud layer is present, and therefore the modeled cloud
regimes and observed cloud types are not directly compara-
ble.

The results are essentially the same when the cloud frac-
tion threshold for defining the cloud regimes, applied inde-
pendently over each vertical slice of the troposphere as ex-
plained in Sect. 2.2.3, is set to 1 %, 2 %, 5 % or 10 %.

These results, consistent between the AROME and satel-
lite classifications, highlight that although on average the
SWD bias is small under overcast conditions, it results from
the compensation of large and systematic errors, positive for
high clouds and negative for low clouds. This also explains
why the SDE remains large compared to the bias.

To further investigate the error distribution for each cloud
type, it is useful to examine the CSI for the AROME cloud
regimes in overcast situations. Figure 11 shows the CSI dis-
tribution for all cloud regimes in the model and in the ob-
servations. For CR0, CR1, CR4, CR6 and CR7, i.e., for the
cloud regimes which have a non-zero cloud fraction in the
lower atmosphere, the model has too many low CSI val-
ues below 0.1 compared to the observation. For CR1, and
CR4, the model does not have enough values greater than 0.6.
These two findings suggest that in overcast situations, the op-
tically thick low clouds are too thick in AROME and that the
model does not have enough optically thin low clouds. This
explains the overall negative bias for these cloud regimes.
For CR3, CR5 and CR6, the model has too many high values
(between 0.8 and 1 for CR3, between 0.5 and 0.9 for CR5,
and between 0.6 and 1 for CR6) and for CR3 and CR5 not
enough low values. This suggests that high clouds are overall
optically too thin in AROME. Even though the model does
not have CSI values greater than 1, while the observations
do, the bias is positive for these cloud regimes, as seen in
Fig. 10a. This positive bias is not due to a potentially too
small cloud fraction in the model, as only overcast situations
in the model are selected.

To further investigate the SDE associated with each cloud
regime, Fig. 12 shows the distribution of SWD errors for
all AROME cloud regimes. For each CR, the SDE is high
compared to the mean flux, in particular for CR2, CR4, CR5
and CR6. Interestingly, it shows that for all cloud regimes
the mean biases result from both positive and negative con-
tributions, indicating that multiple sources of errors are in-
volved. The same is obtained for the distribution of SWD
errors for observed cloud type in the satellite classification
(not shown). This suggests that improving the mean bias of
individual cloud regimes would not necessarily imply much
better forecasts. It also implies that more detailed observa-
tions are needed to better understand these errors and their
sources.

To summarize, the errors in overcast conditions depend
on the cloud regimes. Low clouds seem on average opti-
cally too thick, although the negative bias may be due to an
overestimation of the cloud fraction in overcast situations in
the model. In contrast, simulated high clouds are often op-
tically too thin. Although it would be interesting to evaluate
the model over a longer period, the fact that our results are
consistent for each month of 2020 suggest that they are not
specific to this particular year.

4 Discussion

In this section, we first address the cloud fraction issue and
provide a critical analysis of the satellite cloud mask and
cloud type. We then investigate potential sources of error in
AROME that could explain the observed SWD errors.

4.1 Limitation of the observations

4.1.1 Cloud fraction

In this study we did not evaluate cloud fraction, so we could
not attribute SWD errors to potential cloud fraction errors.
Indeed, evaluating the cloud fraction at AROME resolution
over a large domain is challenging because spatially and tem-
porally resolved cloud fraction observations at such spatial
resolution are not common.

The cloud fraction of AROME at 2.5 km horizontal resolu-
tion has already been evaluated at a larger timescale between
2000 and 2018 with the 0.05◦ COMET and 0.25◦ CLARA
satellite products by Lucas-Picher et al. (2022). They show
that in summer, AROME underestimates the cloud fraction
over land, resulting in an overestimation of SWD, while it
overestimates the cloud fraction in winter and spring. SWD
is also overestimated in spring and fall, although less than in
summer. Like Lucas-Picher et al. (2022), we found a SWD
positive bias for every month of the year (Fig. 5a), even in
winter and spring when the cloud fraction is possibly over-
estimated. This suggests that sources of error other than the
cloud fraction are responsible for the positive SWD bias and
that the underestimation of the cloud fraction in summer fur-
ther accentuates the bias.

Satellite products at finer resolution should be used to an-
alyze cloud fraction errors in AROME at 1.3 km resolution
over the whole year of 2020, such as the daily MODIS prod-
uct (Ackerman et al., 2008), although this product cannot
capture the targeted hourly resolution. An alternative to satel-
lite observations would be to use ground observations from
instrumented sites, allowing evaluation at a finer scale. Cloud
fraction can be estimated from global and diffuse shortwave
broadband measurements (Long et al., 2006), all-sky imag-
ing systems (Pfister et al., 2003), or remote sensing instru-
ments such as radar, lidar and microwave radiometers (e.g.,
Illingworth et al., 2007).
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Figure 11. Distribution of clear-sky index for CR0, CR1, CR2, CR3, CR4, CR5, CR6 and CR7 in AROME and in the observations when the
SZA is less than 70◦.

However, the cloud fractions derived from different ob-
servations generally differ (Long et al., 2006; Wagner and
Kleiss, 2016), and more critically, the cloud fraction is some-
how loosely defined, so that the observed cloud fraction does
not necessarily match the model definition (Brooks et al.,
2005). Above all, assessing the performance based solely on
a few sites would not be consistent with the evaluation strat-
egy adopted in this study.

4.1.2 Cloud detection by satellite

In this paper, several hints suggest that some clouds are not
detected by the satellite product, such as the asymmetry be-
tween the frequency of clear skies in the model and in the
observations (Sect. 2.2.3) or between the frequency of false
alarm and miss cases (Sect. 3.2). In addition, the temporal
variability of SWD under clear sky is much larger in the ob-

servations than in the model (not shown). This questions the
reliability of the satellite cloud mask used.

The likely non-detection of clouds may have an impact
on our results. For the correct negative cases, this could ex-
plain a SWD positive bias in AROME, with clouds present
in reality but not detected, and an overestimation of the fre-
quency of correct negative cases. Likewise, it may lead to
an underestimation of the hit cases’ frequency, in addition
to not taking into account some optically thin real clouds
in the error calculations. However, the impact on the hit
cases is probably limited due to their high relative frequency
compared to the probably low relative occurrence of non-
detection. In the future, a more reliable cloud detection could
be based on ground observations from remote sensing instru-
ments or high-frequency global and diffuse SWD measure-
ments (Long and Ackerman, 2000).
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Figure 12. Distribution of SWD errors (bias and SDE indicated) for CR0, CR1, CR2, CR3, CR4, CR5, CR6 and CR7 cloud regimes in
overcast situations.

It should be noted that there may also be cases of clouds
detected but not present in reality (LeGléau and Kerdraon,
2019) but that the impact is probably negligible in our study.

4.2 Cross-comparison between the cloud regimes and
the cloud types

To assess the consistency between simulated cloud regimes
(CRs) and observed cloud types (CTs) and analyze the
matches between the model and the observations, a cross-
comparison is shown in Fig. 13. It displays the distribution of
cloud types for each cloud regime and, conversely, for the hit
cases in overcast situations. Recall that the parallel between

cloud regime and cloud type is not direct since satellite prod-
ucts do not see what is under an optically thick cloud.

For low clouds, Fig. 13a shows that for CR0, CR4 and
mainly for CR1, LC is most often observed. In contrast,
Fig. 13b shows that when LC is observed, CR7 and CR6 are
most often simulated, more than CR0, CR1 and CR4. CR2,
CR3 and CR5 remain very rare in this case. The relative high
frequencies of CR6 when LCs are observed (18.8 %) and of
LCs when CR6 is simulated (50.9 %) can be explained by
the non-detection of optically thin high clouds. Note that in
Sect. 2.2.3, we have shown that CR7 clouds are far too fre-
quent in the model compared to observations (HC) and that it
is therefore not surprising to find an excessive occurrence of
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Figure 13. Cross-comparison of cloud regime/cloud type (in %) in
hit cases. (a) For each CR, the relative frequency of each CT. The
last column is the relative frequency of each CR for all hits in over-
cast situations. The sum of each row is equal to 1. (b) For each CT,
the relative frequency for each CR. The last column is the relative
frequency of each CT over all hits in overcast situations. The sum
of each row is equal to 1.

CR7 in some cloud types. Even so, this suggests that for low
clouds, the cloud type is in reasonable agreement with the
model, and thus the negative bias of SWD found in Sect. 3.3
is actually related to poorly simulated low clouds. The study
of fog remains limited by satellite because the satellite prod-
uct includes fog in low clouds (LeGleau, 2019), as fog and
low stratus are difficult to distinguish (Bendix et al., 2005).

For optically thin high clouds, Fig. 13a shows that for
CR3, SCs (48.4 %) and FCs (26.1 %) are mostly observed,
which means a good match for optically thin high clouds
since the distinction between SC and FC is questionable. In-
deed, very thin cirrus are often classified as fractional clouds
(LeGleau, 2019). Conversely, in Fig. 13b for SC, mostly CR7

(36.5 %), CR5 (22.0 %) and CR3 (19.9 %) are simulated, so
the relative frequency of CR7, as for LC, seems too high. For
FC, CR3 is mostly simulated (32.5 %).

For optically thick high clouds that most likely correspond
to CR5, CR7 and HC, Fig. 13a shows that for CR5, SC
and HC are mainly observed (63.8 % when added together),
much more than LC, MC and FC. For HC, CR5 (20.3 %) and
CR7 (68.0 %) are mainly simulated, while few CR0, CR1 and
CR4 clouds are simulated. This means that we also have a
relatively good match for high opaque clouds (HCs) and geo-
metrically thick high clouds in the model (CR5, CR7). Thus,
for high clouds, the model cloud regimes are in reasonable
agreement with the observed cloud type, even though CR7
is too frequent in the model. This suggests that the positive
SWD bias found in Sect. 3.3 is indeed related to high clouds.

In summary, there is generally a good correlation between
the modeled cloud regime and the observed cloud type, al-
though the match is not perfect. When the model predicts low
clouds, mostly low clouds are observed, and when the model
predicts high clouds, mostly semi-transparent and opaque
clouds are observed. However, CR7 seems too frequent, with,
in particular, too many occurrences when LCs are observed.
Note, however, that some of the errors may also come from
the fact that we compare instantaneous satellite products to
hourly mean values of the model.

4.3 Investigating AROME errors

We now identify potential sources of error in AROME that
could explain the biases highlighted in Sect. 3.3. Wurtz et al.
(2021) pointed out that in AROME, the ice and snow con-
tents of the anvils of mesoscale convective systems are too
small. Their spatial extent is also too small, which they at-
tributed to excessive snowfall velocities in AROME, result-
ing from a poor parametrization of the ice particle size distri-
bution, an issue already reported by Taufour et al. (2018).
Wurtz et al. (2023) improved the treatment of snow in
AROME, a correction that could help increase the snow mass
and thus reduce the positive SWD bias for high clouds if
snow is properly accounted for in the radiative code.

Another explanation for the positive SWD bias for high
clouds could be that snow (which is one of the hydrome-
teors simulated by the microphysical scheme) is currently
not taken into account in the AROME radiative code. Yet,
on average over 2020, the total snow mass is 1.6 times that
of cloud ice, meaning that a significant mass is neglected in
the AROME radiative calculations. This is especially true for
CR3, CR5 and CR7 where the snow mass dominates both the
cloud liquid and cloud ice masses (not shown). In practice,
it is recommended to include snow in radiative calculations,
as snow has a significant radiative impact on the SWD as
shown in the IFS model (Li et al., 2014a) and CMIP simu-
lations (Li et al., 2014b, 2022), at least in regions with high
precipitation and/or convective activity. Applying the correc-
tion developed by Wurtz et al. (2023) and taking into account
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the radiative effect of snow could reduce the positive SWD
bias for high clouds found in this study. Note however that it
could also deteriorate the bias for low clouds that are already
too opaque (e.g., CR4 in winter).

Apart from the treatment of snow and ice, SWD errors
have often been attributed to liquid water path (LWP) er-
rors. Evaluation of LWP in AROME could provide informa-
tion on LWP errors and help understand the SWD negative
bias in overcast situations. However, evaluating the LWP at
AROME resolution over a large domain and a full year is
challenging since geostationary satellite LWP products, such
as the NWC SAF product, remain very limited because they
rely on passive instruments. To investigate SWD errors due
to LWP errors, a case study could be conducted, such as
Ahlgrimm and Forbes (2012), who identified LWP errors us-
ing microwave radiometer measurements that could explain
the SWD positive bias in overcast low cloud situations in the
IFS model. For instance, observations from the SIRTA su-
persite on the Saclay plateau (Chiriaco et al., 2018) could be
used to better separate the contributions of variables such as
cloud fraction, liquid water path and cloud droplet effective
radius. Polar-orbiting satellites with active measurements on-
board (e.g., CloudSat and CALIPSO, Stephens et al., 2018)
could also be used to analyze the contributions of LWP and
IWP (ice water path) errors, but their spatial and temporal
coverage is very limited for evaluating the performance of
NWP models at hourly and kilometric resolutions.

Errors in the representation of the mixed phase were also
highlighted by Forbes and Ahlgrimm (2014) in the IFS
model and Barrett et al. (2017) in five operational NWP mod-
els including the IFS model, as well as Engdahl et al. (2020)
in HARMONIE-AROME. They reported an underestimation
of the supercooled liquid water content in boundary layer
clouds. This would likely result in an overestimation of SWD
(Hogan et al., 2003), which could explain the positive SWD
bias for the clouds involved, namely CR2, CR4 and CR5.
Although this error source is not consistent with the average
negative SWD bias we found for CR4 in overcast conditions,
it may account for some positive errors (see Fig. 12) for CR4
and participate in the positive bias for CR2 and CR5.

To conclude, several sources of error have been high-
lighted in the literature, some of which may contribute to the
SWD errors reported in our study. Further investigations with
more advanced observations should be used to overcome the
limitations of the observations used in this study.

5 Conclusions

In this study, we performed a detailed evaluation of the 24 h
SWD forecasts of the French NWP model AROME at 1.3 km
horizontal resolution, comparing a full year of hourly fore-
casts with in situ SWD measurements from the pyranometer
network operated by Météo-France. A preliminary analysis
showed that errors mainly occur when clouds are present in

the model and in the observations, while erroneously pre-
dicted and missed clouds contribute less to the overall errors,
as these situations are less frequent. Missed clouds and erro-
neously predicted clouds mainly correspond to clouds with a
low impact on the SWD. Errors in cloudy situations, which
have a positive bias overall, can also result from errors in
the simulated cloud fraction or in the cloud optical thick-
ness. Since errors in the cloud fraction are difficult to evaluate
over a large domain, we limited our study to overcast situa-
tions in the model, implying that the SWD overestimation
cannot be attributed to an underestimation of the cloud frac-
tion. In such overcast conditions, the overall bias is close to
zero. We then quantified the SWD errors for different cloud
regimes, corresponding to different cloud altitudes. In doing
so, we found a systematic SWD negative bias for low clouds
and a systematic SWD positive bias for high clouds, consis-
tent throughout the year, which essentially compensate to the
near zero bias. In addition to these systematic deviations, we
found unsystematic errors with significant SDE for all cloud
regimes, which is critical for the solar energy sector. Note
that this study was based on only 1 year, and even if the re-
sults seem to be robust with similar SWD errors through the
year, it might be relevant to extend this study to several years.
A cross-comparison between cloud regimes and cloud types
showed relatively good agreement between the model and
observations, especially for low clouds, confirming that the
negative bias of SWD is indeed related to low clouds and the
positive bias of the SWD is indeed related to high clouds. We
pointed out that the positive bias of ice clouds may be due to
the failure to account for snow in the AROME radiation code
or to the too low snow content of ice clouds, issues that could
be addressed in the future. Other sources of SWD errors have
been mentioned, such as LWP or mixed-phase representation
errors.

Our results also suggest that some clouds are not de-
tected by the satellite, highlighting the need for more detailed
cloud observations to go further in error assessment. In addi-
tion, efforts should be made to evaluate the cloud fraction at
AROME resolution over a large domain to fully characterize
the performance of AROME for SWD forecasts. This may
be addressed using large networks of ceilometers or more
complete shortwave radiation measurements. To better un-
derstand which physical properties of clouds cause SWD er-
rors, further evaluations that distinguish cloud fraction errors
from errors in the vertical distributions of condensed water
and cloud particle effective radius are needed and should be
based on highly instrumented sites. Although the study fo-
cused on AROME, the presented methodology can be ap-
plied to any NWP model, and the detailed evaluation can
provide valuable physical information about the model per-
formance, paving the way for future model improvement.
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Data availability. The cloud satellite products devel-
oped by the NWC EUMETSAT SAF are available at
https://www.icare.univ-lille.fr/asd-content/archive/ (() and the doc-
umentation at http://www.nwcsaf.org (NWC SAF Documentation,
2024). The aerosol product from Copernicus Atmosphere Monitor-
ing Service (2024) is available at https://atmosphere.copernicus.eu/.
The observations of shortwave downward radiation from the op-
erational observation network of Météo-France (2024) are freely
available for research purposes at https://donneespubliques.
meteofrance.fr/?fond=produit&id_produit=298&id_rubrique=32.
AROME forecasts of SWD used in this study are available
at https://doi.org/10.5281/zenodo.7928622 (Magnaldo et al.,
2023). As the data set used for this study is very large (800 GB),
only the shortwave downward radiation data are available. The
other parameters are available upon request from the corre-
sponding author. Access to the AROME code can be requested
via the ACCORD consortium web page (ACCORD, 2024):
http://www.umr-cnrm.fr/accord/.
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