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Photon path distributions in optically thin slabs
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Abstract: The probability distribution function of photon path length in a scattering medium
contains valuable information on that medium. While strongly scattering optically thick media
have been extensively studied, in particular, with resort to the diffusion approximation, optically
thin media have received much less attention. Here, we derive the probability distribution
functions for the lengths of singly- and twice-scattered photon paths in an isotropically scattering
slab of optical thickness τ, for both reflected and transmitted photons. We show that, in the
case of an optically thin slab, these photons dominate the overall response of the medium. We
confirm that the second moment of the distribution deviates from the ballistic limit in the case
of collimated illumination. Interestingly, we show that under diffuse illumination, the second
moment of the distribution is dominated by unscattered transmitted photons, hence is proportional
to lnτ, and independent of the phase function. Higher moments of order n (≥3) scale as Hnτn−2.
When only reflected or transmitted photons are considered, the second moment scales as H2τ−1,
whatever the illumination and viewing conditions. This provides direct access to τ. These
theoretical results are extensively supported by Monte Carlo ray-tracing simulations. Extension
to anisotropic scattering using these same simulations shows that the results hold, given a scaling
factor for collimated illumination, and without any dependence on the phase function for diffuse
illumination. These results overall demonstrate that the optical thickness of an optically thin
slab can be estimated from the second moment of the distribution. Along with the fact that
under diffuse illumination the geometrical thickness can be derived from the first moment of
the distribution, this proves that the extinction coefficient of the medium can be estimated from
the combination of both moments. This study thus opens new perspectives for non-invasive
characterization of optically thin media either in the laboratory or by remote sensing.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Detailed analysis of light scattered by a medium is at the core of several measurement techniques
in a variety of areas ranging from atmospheric remote sensing to medical imaging. In many
practical situations, the probed medium can be represented as a homogeneous horizontally infinite
slab. In this case the main properties that describe the medium are its geometrical thickness
H, its extinction and absorption coefficients σe (corresponding to a mean free path le) and σa,
and its scattering phase function P (often reduced to the asymmetry parameter g). Generally,
reflectance or transmittance is measured, under various illumination and viewing conditions, at a
variety of wavelengths and spectral resolutions. In scattering media, photons follow tortuous
paths before being eventually absorbed, transmitted or reflected. The diversity of possible paths
can be represented by the probability distribution (hereafter called “pdf”) of total path length l.
Investigation of the path length distribution has been a critical issue for decades [1].

The pdf of photon path length for reflected and transmitted light can be directly measured using
photon time-of-flight spectroscopy [2,3] but this requires knowledge of the effective refractive
index of the medium [4] and a sophisticated experimental setup that can hardly be deployed.
The pdf can also be determined theoretically for certain geometries, considering successive
orders of scattering [5], or by using the fact that spectral reflectance and transmittance can be
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written as the Laplace transform of the path length distribution [6,7], a relationship known as
equivalence theorem [8]. The latter method can be applied to analytically derived expressions of
reflectance and transmittance [9], or, at least in theory, to observations. However the spectral
resolution and noise level required to obtain a satisfactory inversion remain very demanding for
real measurements [10]. Although the full pdf contains a wealth of information on the medium
[11], in most cases only some moments are accessible, for instance exploiting the Laplace
transform results in the moments being related to the derivatives of the measured quantities
with respect to σa [12]. Hence it is worth investigating how the moments of the pdf are related
to the medium characteristics. To do so, one can either assume a particular pdf and fit free
parameters in order to match observations [13], or use measurements that are directly related to
these moments. For instance, the first moment, namely the mean path length, is what determines
overall absorption in the case of weak absorption [14].

Theoretical work has demonstrated that the mean path length of photons escaping from a
non-absorbing slab illuminated by a diffuse source equals 2H, independently of the scattering
properties of the medium [15], a property that has been later on verified experimentally [16].
Similar invariance properties have been obtained for higher moments [17], but only in the case
of optically thick media. More generally, the diffusion approximation has been widely used to
investigate the pdf and its moments [18,19]. This approximation has proven very efficient for
optically thick media but is inappropriate for optically thin media, that is, in the ballistic limit.
Optically thin media are found everywhere, though, from thin cirrus clouds to human tissues,
and deserve more attention.

To model the response of optically thin media to a light beam, various strategies have been
explored [20]. Simple models where light can only be scattered perpendicular or parallel to
the slab have been used [21,22]. It was shown that the mean path length tends towards 3H for
normal illumination and low optical thickness, while the ballistic limit would suggest it equals
H. This deviation was attributed to the very few photons scattered parallel to the slab, which
experience such long paths that this overcompensates their scarceness. In such configuration, it
was also found that directly transmitted, reflected and transmitted photons equally contribute
to the mean path length. Normal illumination was also considered in [21], but with isotropic
scattering in the medium. The pdf of the directly transmitted and singly-scattered (reflected
or transmitted) photons was derived, to obtain a lower bound of the successive moments. It
was shown that the first moment converges to the ballistic limit H, but that the second moment
converges to something larger than H2, and that the nth moments (n>2) divided by Hn even
diverge with decreasing optical thickness τ. In a complementary study [23], this divergence was
further explored and it was fully explained by the long tail of the pdf for photons experiencing
one or two scattering events. The latter study provides an insightful discussion on the reasons
why photons scattered once and twice should equally contribute to the moments divergence.

In the present study, we extend the work of [23] to the general cases of collimated (from any
direction) and diffuse illumination. The case of diffuse illumination is of particular interest
because of the invariance properties that arise in such conditions. The invariance property for
the mean path length has been proven for any optical thickness. In contrast, the dependence
of the second moment (the variance) on optical thickness has only been studied in the case of
optically thick media. For instance, its quadratic dependence has been derived theoretically in
the diffusion limit [19] and observed for transmitted sunlight through opaque stratus clouds [24].
The question naturally arises how the variance behaves in the case of optically thin media. That
is a central motivation for the present study, which also advances our understanding of light
scattering in optically thin media.

In Section 2, the pdf for singly- and twice-scattered photons are obtained for collimated
and diffuse illumination, and for directional and angularly integrated viewing configurations.
Focusing on the long tails of these pdf the asymptotic behavior of the moments at low optical
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thickness are investigated. In Section 3, Monte Carlo ray-tracing simulations are performed
to validate the analytical results, and to extend the conclusions drawn from the calculations to
higher orders of scattering and anisotropic scattering (addressed theoretically in Appendix B).
Some practical implications of the present study are discussed in Section 4, and we draw our
conclusions in Section 5.

2. Analytical computations

Let us consider a horizontally infinite, homogeneous, purely scattering (i.e., non-absorbing) slab
of thickness H illuminated by a beam of photons incident at a zenith angle θ0 such that cos θ0 = µ0
(s0 = µ

−1
0 ). The medium is characterized by its extinction coefficient σe, the corresponding

extinction length being denoted le. The optical thickness of the slab is defined as τ = H/le. Let
us further assume that the distribution of the photon free path L between two scattering events
follows a simple exponential law such that:

p(L) =
1
le

e−
L
le . (1)

Let l be the total path length of a photon in the slab between its entrance and escape points
(corresponding either to transmitted or reflected paths), and p(l) the corresponding pdf. p(l) can
be written as a sum on the number of scattering events experienced by the photons, so that:

p(l) =
∞∑︂
0

pk(l), (2)

where pk(l) is the joint probability that a photon has traveled a total length l in the slab and
experienced k scattering events. We note l0, l1,. . . , lk the successive individual contributions to l
for a photon that is scattered k times, and θk the zenith angle corresponding to lk. We also note
z0,. . . , zk the depth of the (k + 1)th scattering event. Scattering is assumed isotropic within the
medium, such that the scattering phase function in terms of the zenith and azimuth angles θ and
ϕ is given by P(θ, ϕ) = 1

4π . Because the total distance traveled does not depend on the successive
ϕ directions, the probability to be scattered with a zenith angle θ is defined as:

P(θ) =
∫ 2π

0
P(θ, ϕ) sin θdϕ =

1
2

sin θ, (3)

and is normalized such that
∫ π

0 P(θ)dθ = 1. In the following we only focus on p0(l), p1(l) and
p2(l). These pdfs are derived for collimated (i.e., when photons come from a single direction)
and diffuse (i.e., isotropic) illumination. The focus is first on all escaping photons, whatever their
escape direction. Then directional viewing configurations are considered. Figure 1 summarizes
the geometry of the problem for single and double scattering.

2.1. Collimated illumination

The case of normal illumination (θ0 = 0) has already been treated [21,23]. Here we extend the
computation to any incident angle θ0. In this case p0(l), which corresponds to directly transmitted
photons, simply reads:

p0(l) = e−τs0δ (l − Hs0) , (4)

where δ is the Dirac function. To compute p1(l), the contributions of transmitted and reflected
photons are treated separately, and denoted p1,t(l) and p1,r(l).
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Fig. 1. Geometry of the slab, with the main quantities used in the calculations, for single
(top) and double (bottom) scattering.

2.1.1. Singly scattered transmitted photons

The distribution p1,t(l) (equal to 0 for l ≤ H) can be written as:

p1,t(l) =
∫ H

0
p(z0)p(l|z0)dz0. (5)

Note however that this expression is only valid for l ≥ Hs0. In the case H ≤ l ≤ Hs0 the integral
does not extend up to H, it is limited to zmax such that zmaxs0 + (H − zmax) = l (which ensures that
p(l|z0) ≠ 0), i.e., zmax =

l−H
s0−1 . As l0 = z0s0, p(z0) = p(l0)s0 =

s0
le e−

l0
le . It’s also worth noting that

the probability p(l|z0)dl equals the probability to be scattered in the direction θt, namely P(θt)dθt,
times the probability to reach the lower boundary without being scattered again, e−

l−l0
le . θt is the

angle ensuring that l0 + l1 = l, so that cos θt = H−z0
l−l0 . Differentiating the latter expression gives

sin θtdθt = H−z0
(l−z0s0)2

dl. Recalling that P(θt) = 1
2 sin θt, this overall gives:

p(l|z0) =
1
2

H − z0

(l − z0s0)
2 e−

l−l0
le . (6)

Finally, for l ≥ Hs0:

p1,t(l) =
s0
2le

e−
l
le

∫ H

0

H − z0

(l − z0s0)
2 dz0 (7)
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=
µ0
2le

e−
l
le

(︃
− ln

(︃
1 −

H
µ0l

)︃
−

H
µ0l

)︃
. (8)

For H ≤ l ≤ Hs0, integration stops at zmax:

p1,t(l) =
µ0
2le

e−
l
le

(︃
− ln

(︃
H − µ0l
(1 − µ0)l

)︃
+

l − H
µ0l

)︃
. (9)

2.1.2. Singly scattered reflected photons

The distribution p1,r(l) can be written as p1,t(l) in Eq. (5). Like previously the paths l ≥ H (1 + s0)
(which can be obtained for any z0), and those such that l ≤ H (1 + s0) (which can be obtained
only if z0 ≤ zmax) are distinguished. Here zmax is such that l = zmax(1 + s0), i.e., zmax =

l
1+s0

.
Defining the escape angle θr, cos θr = z0

l−l0 , and sin θrdθr = z0
(l−z0s0)

2 dl. p(l|z0) now reads:

p(l|z0) =
1
2

z0

(l − z0s0)
2 e−

l−l0
le . (10)

Hence for l ≥ H (1 + s0):

p1,r(l) =
s0
2le

e−
l
le

∫ H

0

z0

(l − z0s0)
2 dz0 (11)

=
µ0
2le

e−
l
le

(︃
H

µ0l − H
+ ln

(︃
1 −

H
µ0l

)︃)︃
. (12)

For l ≤ H(1 + s0), integration stops at zmax and:

p1,r(l) =
µ0
2le

e−
l
le

(︃
1
µ0
+ ln

(︃
µ0

1 + µ0

)︃)︃
. (13)

The distributions p1,t(l) and p1,r(l) are shown in Fig. 2 for H = 2 m, τ = 2 and µ0 = 0.5 (black
lines). For µ0 = 1, it can be verified that these equations correspond to previously derived
expressions [21].

2.2. Diffuse illumination

We now consider isotropic illumination, such that the pdf of the incident direction of the photons
is given by P(θ0, ϕ) = cos θ0

π . As a consequence P(θ0) = 2 cos θ0 sin θ0. In this case the pdf of l
for directly transmitted photons (equal to 0 for l ≤ H) is such that:

p0(l)dl = e−
l
le P(θl)dθl; (14)

p0(l) =
2H2e−

l
le

l3
, (15)

where θl is such that cos θl = H
l , and sin θldθl = H

l2 dl. As previously, the contributions of
singly-scattered photons are separated into the transmitted and reflected paths.

2.2.1. Singly scattered transmitted photons

Following Eq. (5):

p1,t(l) =
∫ π/2

0

∫ H

0
p(θ0)p(z0 |θ0)p(l|z0)dz0dθ0, (16)

which again is only valid for l ≥ H. Using p(z0 |θ0) and p(l|z0) as derived in Section 2.1.1:

p1,t(l) =
1
le

e−
l
le

∫ 1

0

∫ H

0

H − z0

(l − z0/µ0)
2 dz0dµ0. (17)

With this definition care should be taken for the ranges of integration because short paths are
not possible for all θ0 and all z0. More precisely, there will be paths for all z0 only if l ≥ Hs0.



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40973

0.00

0.01

0.02

0.03

0.04

0.05

p 1
,t
(l
)

0 2 4 6 8 10
l(m)

0.00

0.05

0.10

0.15

0.20

p 1
,r
(l
)

H = 2.0 m τ = 2.0 μ0 = 0.5

Fig. 2. Probability distributions of total path length for singly scattered transmitted (top)
and reflected (bottom) photons under collimated illumination. The black lines correspond to
the analytical formulas of Eqs. (8), (9), (12), (13). The gray shades correspond to histograms
obtained from Monte Carlo simulations with 107 photons launched.

Otherwise, only the z0 such that l ≥ z0s0+ (H− z0) are possible, i.e., z0 ≤ l−H
s0−1 . As a consequence,

p1,t(l) =
1
le

e−
l
le

[︃∫ 1

H/l

∫ H

0

H − z0

(l − z0/µ0)
2 dz0dµ0

+

∫ H/l

0

∫ (l−H)/(1/µ0−1)

0

H − z0

(l − z0/µ0)
2 dz0dµ0

]︃
.

(18)

These integrals are computed in Appendix A, and the final result is:

p1,t(l) =
2

3l3le
e−l/le

[︃
H3 ln

(︃
H
l
− 1

)︃
− l3 ln

(︃
1 −

H
l

)︃
+ H2l − Hl2

]︃
. (19)

2.2.2. Singly scattered reflected photons

We proceed similarly for the reflected paths to obtain the following expression:

p1,r(l) =
1
le

e−l/le
∫ 1

0

∫ H

0

z0

(l − z0/µ0)
2 dz0dµ0. (20)

Again care should be taken for the boundaries of integration. Let first consider the paths such
that l ≥ 2H. In this case, all z0 are possible only if l ≥ H (s0 + 1), that is µ0 ≥ H

l−H . Otherwise,

the paths are restricted to those such that l ≥ z0 (s0 + 1), that is z0 ≤
l

s0 + 1
. For l ≤ 2H, only the
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second contribution is taken into account. This can be summarized as follows:

if l ≥ 2H : p1,r(l) =
1
le

e−l/le
[︃∫ 1

H/(l−H)

∫ H

0

z0

(l − z0/µ0)
2 dz0dµ0

+

∫ H/(l−H)

0

∫ l/(1/µ0+1)

0

z0

(l − z0/µ0)
2 dz0dµ0

]︃
.

(21)

if l ≤ 2H : p1,r(l) =
1
le

e−l/le
∫ 1

0

∫ l/(1/µ0+1)

0

z0

(l − z0/µ0)
2 dz0dµ0. (22)

These integrals are computed in Appendix A, and for l ≥ 2H the final result is:

p1,r(l) =
2

3le
e−l/le

(︄
ln

(︃
1 −

H
l

)︃
+ 2

(︃
H
l

)︃3
ln

(︃
l
H

− 1
)︃

+
H
l3

[︄
1
2

(︄
(l − H)2 −

(︃
H2

l − H

)︃2)︄
+ 2H

(︃
l −

lH
l − H

)︃]︄
−

1
4

(︄(︃
l

l − H

)︃2
− 1

)︄
+

H
l − H

+
3
4

(︃
H

l − H

)︃2
)︄

.

(23)

For l ≤ 2H, the computation simply reads:

p1,r(l) =
2

3le
e−l/le (1 − ln 2) . (24)

These distributions are shown in Fig. 3 (black lines) for H = 1 m and τ = 1.

2.3. Directional observations with collimated illumination

The pdfs derived in the previous sections were obtained considering all photons escaping the
slab, whatever their escape direction. Although conceptually useful, these pdfs are not applicable
to standard satellite or ground observations which generally measure scattered photons at a
particular viewing angle, and under collimated illumination (from the Sun or from an active
source such as a lidar). Using the same approach as previously the joint probability distribution
of l and escape angle (θr or θt), is derived for both transmitted and reflected photons. As before,
this pdf is decomposed in successive orders of scatterings.

2.3.1. Reflected photons

For single scattering, the pdf simply corresponds to the probability to be scattered at the
appropriate depth z0, and then to escape without being scattered again:

p1,r(l, θr)dl = p(z0)|z0=
l

s0+sr
dz0e−

l−l0
le

1
2

sin θr;

p1,r(l, θr) =
1

2le
s0

s0 + sr
e−

l
le sin θr,

(25)

where sr = µ
−1
r , and µr = cos θr. Note that the corresponding normalized pdf reads:

p1,r(l, θr) =
p1,r(l, θr)∫ H(s0+sr)

0 p1,r(l, θr)dl
=

1
le

e−
l
le

1 − e−τ(s0+sr)
, (26)

which is consistent with the equation (6.2) of [1].
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Fig. 3. Same as Fig. 2 but for diffuse illumination. The black lines correspond to the
analytical formulas of Eqs. (19), (23), (24).

Singly scattered photons do not correspond to very long trajectories, hence to further investigate
long paths it is useful to derive p2,r(l). We first notice that in the case of double-scattering without
l1 = (z0 − z1)s1, and l2 = z1sr, where s1 = µ

−1
1 , and µ1 = cos θ1. Also dl = dz1(sr − s1).

p2,r(l, θr) =
∫ H

0
p(z0)

∫ π

0
P(θ1)p(l|z0, θ1)dθ1dz0,

=

∫ H

0
p(z0)

∫ π

0
P(θ1)p(z1)|z1=

l−l0−z0s1
sr−s1

1
|sr − s1 |

P(θr)e−
l−l0−l1

le dθ1dz0,

=
s0

4l2e
e−

l
le sin θr

∫ H

0

∫ 1

−1

µr

|µr − µ1 |
dµ1dz0.

(27)

Care should be taken when integrating over µ1 to ensure that paths exist such that 0 ≤ z1 ≤ H.
We define zm such that zm = min

(︂
H, l

s0+sr

)︂
, the depth (if any) corresponding to single scattering

trajectories. If z0 ≤ zm then θ1 must be larger than θr to lengthen the single-scattering path.
If z0 ≥ zm then θ1 must be smaller than θr (i.e., s1 ≤ sr). Given that z1 =

l−l0−z0s1
sr−s1

, the above
inequalities on z1 give:

µ1 ≥
H − z0

Hsr − l + l0
, (28)

and µ1 ≤
z0

l − l0
for z0 ≤ zm; (29)

µ1 ≥
z0

l − l0
for z0 ≥ zm. (30)
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This overall reads:

p2,r(l, θr) =
s0

4l2e
e−

l
le sin θr

[︄∫ zm

0

∫ z0
l−l0

H−z0
Hsr−l+l0

µr

µr − µ1
dµ1dz0 +

∫ H

zm

∫ 1

z0
l−z0

µr

µ1 − µr
dµ1dz0

]︄
.

(31)
We focus only on long paths such that zm = H (i.e., l ≥ H(s0 + sr), meaning that the second
scattering without lengthens the single-scattering path (µ1 ≥ µr). The above expression reduces
to:

p2,r(l, θr) = −
s0

4l2e
e−

l
le sin θrµr

∫ H

0

[︃
ln

(︃
µr −

z0
l − l0

)︃
− ln

(︃
µr −

H − z0
Hsr − l + l0

)︃]︃
dz0

=
s0

4l2e
e−

l
le sin θrµr

∫ H

0
ln

(︃
l − l0

l − l0 − Hsr

)︃
dz0

=
1

4l2e
e−

l
le sin θrµr ln

(︂
(l − Hs0)

(Hs0−l)(l − Hsr)
(Hsr−l)(l − H(s0 + sr))

(l−H(s0+sr))ll
)︂

.

(32)
For s0 = sr = 1, this expression is consistent with the equation (6.5) of [1].

2.3.2. Transmitted photons

The same strategy is applied to estimate p1,t(l, θr) and p2,t(l, θr). This reads (for st ≠ s0):

p1,t(l, θt) = p(z0)|z0=
l−H

s0−st

1
|s0 − st |

e−
l1
le

1
2

sin θt

=
1

2le
s0

|s0 − st |
e−

l
le sin θt.

(33)

The corresponding normalized pdf reads:

p1,t(l, θt) =
1
le

e−
l
le

|e−τs0 − e−τst |
, (34)

which again agrees with equation (6.3) of [1].
For double scattering the strategy is the same as for reflected photons, except that the integration

bounds are different. Noticing that z1 =
Hst+z0s1−l+l0

s1+st
, the conditions 0 ≤ z1 ≤ H become:

z0 − H
l − l0

≤ µ1 ≤
z0

l − Hst − l0
. (35)

The pdf for sufficiently long paths is given by:

p2,t(l, θt) =
s0

4l2e
e−

l
le sin θt

∫ H

0

∫ z0
l−Hst−l0

z0−H
l−l0

µt

µt + µ1
dµ1dz0,

=
1

4l2e
e−

l
le sin θtµt ln

(︂
(l − Hs0)

(Hs0−l)(l − Hst)
(Hst−l)(l − H(s0 + st))

(l−H(s0+sr))ll
)︂

.
(36)

Note that this expression only holds for l ≥ H(1 + s0 + st), which ensures that the upper limit of
the integral z0

l−Hst−l0 ≤ 1. Interestingly, it means that for long paths, when two scatterings occur,
the probability to be reflected in a direction equals that of being transmitted in the symmetrical
direction. This is consistent with Table 1 of [1] which shows that for an optical thickness of 0.1
the contributions of scattered transmitted and reflected photons to the mean path are similar. The
black lines in Fig. 4 show the behavior of p2,r(l, θr) and p2,t(l, θt) for large l values.
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Fig. 4. Same as Fig. 2 but for directional viewing. The black lines correspond to the
analytical formulas of Eqs. (32), (36). The histograms are obtained from Monte Carlo
simulations with 108 photons launched.

2.3.3. Specific case of nadir illumination and viewing

Although we did not derive the general expressions of p2,t(l, θr) and p2,r(l, θr) for low values of
l, we provide below the expression for nadir illumination and viewing, which corresponds to
backscattering measurements, for instance corresponding to monostatic lidar observations. In
this case, for l ≤ 2H:

p2,r(l, θr) =
1

4l2e
e−

l
le sin θrl ln 2, (37)

where θr ≪ 1. This expression is consistent with equation (6.5) of [1].

3. Estimation of the moments

In this section the moments of the previously derived pdfs are estimated. The nth moment is
denoted M(n)

i,x , where the lowerscript refers to the pdf of interest. The moments for collimated
normal illumination (µ0 = 1) have already been investigated in [21,23]. The authors concluded
that in the case of an optically thin slab, M(n) differs from the ballistic limit Hn as soon as n ≥ 2,
and the normalized moments M(n)/Hn even diverge as τn−2 for n ≥ 3. They attributed this to
the few photons being scattered nearly parallel to the slab boundaries that would experience
very long paths. These photons, making up the long tail of the pdf, would not affect the mean
path but would drive the divergence for higher moments. In addition, they provided physical
insight to support the fact that the moments of p(l) would be dominated in such conditions
by the contributions of p0(l), p1(l), and p2(l), with the contributions of photons scattered once
and twice being of the same order of magnitude. Their theoretical results were supported by
Monte Carlo ray tracing simulations. Here we investigate the moments of p0(l) and p1(l) in
the case of collimated illumination for any incident direction, and for diffuse illumination. We



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40978

also investigate the moments of p2(l) for the case of directional observations. The main focus
is on the behavior of the normalized moments at low optical thickness, a normalized moment
corresponding to the moment divided by the ballistic moment, i.e., (H/µ0)

n for direct illumination
and (2H)n [15] for diffuse illumination.

3.1. Collimated illumination

For low optical thickness the contribution of the unscattered transmitted photons to M(n) simply
becomes (H/µ0)

n. For singly-scattered photons, using only the expressions of Eqs. (8) and (12)
valid for l ≥ 2H, the pdfs reduce to (for µ0l ≫ H):

p1,t(l) ∼ p1,r(l) ∼
1

4µ0le
e−l/le

(︃
H
l

)︃2
, (38)

so that the second normalized moment simply reads:

µ2
0M(2)

1,t

H2 ∼
µ2

0M(2)
1,r

H2 ∼
µ0
4

. (39)

For µ0 = 1 this suggests that the second normalized moment for transmitted photons which have
encountered one scattering or less is 1.25, which is consistent with the Fig. 3 of [21]. For higher
moments:

µn
0M(n)

1,t

Hn ∼
µn

0Mn
1,r

Hn ∼
µn−1

0
4
τ2−n
Γ(n − 1), (40)

where Γ is the gamma function and Γ(n) = (n − 1)!.

3.2. Diffuse illumination

Starting from Eq. (15), M(0)
0,t = 2τ2Γ(−2, τ), where we’ve used the standard notation for the

incomplete Γ function. Likewise,

M(1)
0,t

2H
= τΓ(−1, τ), ;

M(2)
0,t

4H2 =
1
2
Γ(0, τ). (41)

From the asymptotic behavior of the incomplete gamma function when τ → 0:

M(0)
0,t ∼ 1 ;

M(1)
0,t

2H
∼ 1 ;

M(2)
0,t

4H2 ∼ −
1
2

ln τ. (42)

The behavior of M(0)
0,t simply means that for a sufficiently optically thin slab, the probability to be

transmitted without being scattered approaches 1. The asymptotic behavior of M(1)
0,t is consistent

with the invariance property of the mean path length for diffuse illumination [15], which applied
to a non-scattering slab states that the mean path length equals 2H. Finally the behavior of
M(2)

0,t /4H2 shows a divergence as ln τ. It suggests that the infinitely long trajectories through
the slab corresponding to grazing angles dominate the variance of the paths, although they are
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extremely rare. Extension to higher moments reads for n ≥ 3:

M(n)
0,t

2nHn ∼
1

2n−1 τ
2−n
Γ(n − 2). (43)

We now investigate the contribution of the scattered photons. Like previously, we keep only the
dominant term of p1,t(l):

p1,t(l) ∼
1
le

e−l/le
(︃
H
l

)︃2
, (44)

so that as τ → 0,
M(2)

1,t

4H2 ∼
1
4

. (45)

Interestingly the contributions of I1 and I2 in Eqs. (67) and (68) are equal, meaning that grazing
angles contribute as much as non-grazing angles. Similarly it can be shown that M(2)

1,r/4H2 ∼ 1/4,
and that again the contributions are equally split between grazing and non-grazing incident angles.
These results demonstrate that the singly-scattered photons do not contribute to the divergence of
M(2)/4H2, which is only due to the unscattered photons. Assuming that twice-scattered photons
and higher orders do not contribute to the divergence either, it suggests that the asymptotic
behavior of M(2)/4H2 is dominated by unscattered photons, hence is independent of the scattering
phase function, which provides a direct way of estimating τ without any information on the phase
function. Like previously, extension to higher moments directly reads:

M(n)
1,t

2nHn ∼
M(n)

1,r

2nHn ∼
1
2n τ

2−n
Γ(n − 1). (46)

3.2.1. Realistic configurations

Measuring all photons escaping from a scattering slab under collimated or diffuse illumination
is not a common measurement configuration. More often, the illumination is direct, and only
reflected or transmitted radiation is measured (with full angular integration or at a specific
viewing angle). In such case, the relevant pdfs are those corresponding to the actually measured
photons. It means that the pdfs presented in Sections 2.1, 2.2, 2.3 should be normalized by
the probability of actually being reflected (respectively transmitted), in all directions or in the
direction θr (respectively θt). We do not derive these latter probabilities that aggregate all orders
of scattering, but hypothesize that at low optical thickness, they are dominated by single scattering
(excluding direct transmission measurements). As previously, the subsequent derivations are
obtained in the limit τ → 0.

Directional reflection. We define the photon path pdf for reflected photons only:

pi,r(l, θr) =
pi,r(l, θr)∫ ∞

0
∑︁∞

1 pi,r(l, θr)dl
. (47)

We assume that at low optical thickness the probability of being reflected in direction θr equals
the probability of single-scattering without:∫ ∞

0

∞∑︂
1

pi,r(l, θr)dl ∼
∫ H(s0+sr)

0
p1,r(l, θr)dl ∼

1
2µ0
τ sin θr. (48)

As a consequence:

p1,r(l, θr) ∼
e−

l
le

H(s0 + sr)
. (49)
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From this pdf, the normalized moments for singly-scattered photons can be computed:

M(1)
1,r

H
∼

1
2
(s0 + sr) ;

M(2)
1,r

H2 ∼
1
3
(s0 + sr)

2. (50)

The expression of M(1)
1,r is consistent with the Figs. 5 and 6 of [1]. This suggests that in the case

of an optically thin medium, the average photon path length of singly-scattered reflected photons
provides an estimate of the slab geometrical thickness. Interestingly, in the case of an optically
thick medium, the mean photon path length for all reflected photons under the assumption of
isotropic scattering reads [8]:

M(1)

H
= (µ0 + µr), (51)

which also highlights a scaling with H.
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Fig. 5. Second and third normalized moments (µ(2) = µ20M(2)/H2 and µ(3) = µ30M(3)/H3)
of p(l) for collimated illumination (µ0 = 0.5) and istropic scattering, as derived analytically
(lines) and obtained with ray tracing simulations (symbols). Note that the moments for
transmitted photons are not shown, since they would superimpose with those of reflected
photons. Likewise, the second moments for twice-scattered photons are not shown because
they would superimpose with those of singly-scattered photons. MC stands for Monte Carlo
simulations.

We now focus on p2,r(l). It can be shown that for l ≫ H(s0 + sr),

p2,r(l) ∼
s0
4

e−
l
le sin θr

τ2

l
, (52)

so that,

p2,r(l, θr) ∼
τ

2
e−

l
le

l
. (53)

It follows that:
M(1)

2,r

H
∼

1
2

;
M(2)

2,r

H2 ∼
1
2τ

. (54)
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It shows that the second normalized moment diverges as τ−1 in the limit τ → 0, implying that
the divergence is driven by photons scattered nearly parallel to the slab. Interestingly there is
no dependence on the angles of incidence and escape. For higher moments the contribution of
twice-scattered photons becomes:

M(n)
2,r

Hn ∼
1
2
τ1−n
Γ(n). (55)

Directional transmission. Proceeding similarly for photons transmitted in direction θt:

p1,t(l, θr) ∼
e−

l
le

H |s0 − st |
. (56)

From this expression the normalized moments can be computed:

M(1)
1,t

H
∼

1
2
(s0 + st) ;

M(2)
1,t

H2 ∼
1
3
(s2

0 + s0st + s2
t ). (57)

Again, the expression for M(1) is consistent with the asymptotic behavior seen in Fig. 7 of [1]. As
the asymptotic behavior of p2,t(l) is similar to that of p2,r(l), the corresponding moments also
behave similarly:

M(1)
2,t

H
∼

1
2

;
M(2)

2,t

H2 ∼
1
2τ

;
M(n)

2,t

Hn ∼
1
2
τ1−n
Γ(n). (58)

Note that the independence of M(1)
2,t to µ0 and µt appears in the Fig. 7 of [1].

Reflection and transmission in all directions. Building on the previous derivations it is worth
considering reflectance and transmittance measurements that account for photons reflected in all
directions, under collimated or diffuse illumination. It implies a scaling of the pdfs derived in
Sections 2.4.1 and 2.4.2 by the probability to actually be reflected or transmitted, again assumed
to be dominated by single-scattering without. In this case, the scaling of M(2) changes. Bearing
in mind that the asymptotic expressions are similar for reflected and transmitted photons it reads
for collimated illumination: ∫ ∞

0
p1,r(l)dl ∼

∫ ∞

0
p1,t(l)dl ∼

τs0
2

, (59)

so that:
M(2)

1,r

H2 ∼
M(2)

1,r

H2 ∼
1
2τ

. (60)

Note that there is no dependence on µ0.
For diffuse illumination: ∫ ∞

0
p1,r(l)dl ∼

∫ ∞

0
p1,t(l)dl ∼ τ, (61)

so that:
M(2)

1,r

4H2 ∼
M(2)

1,t

4H2 ∼
1
4τ

. (62)

These findings suggest that when only reflected or transmitted photons are considered, for direc-
tional (respectively angularly integrated) viewing configurations, twice-scattered (respectively
singly-scattered) photons contribute to the divergence of the second normalized moment as τ−1.
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4. Monte-Carlo ray-tracing simulations

Now that we have derived analytical expressions for the photons scattered once and twice, we
compare these expressions to the results obtained with a Monte Carlo ray tracing code. This
code, which is similar in essence to [25], consists in launching a number of photons at the surface
of a numerical slab, and following them until they escape the slab via transmission or reflection.
The distance between successive scattering events is drawn from the pdf given by Eq. (1) and
the scattering angle is drawn from a Henyey–Greenstein phase function [26] described by the
asymmetry parameter g. For diffuse illumination the incident angle is drawn from the angular
distribution 2 cos θ sin θ. The code was optimized to work at low optical thickness. To this end,
each photon contributes to scattering (the probability to be unscattered is taken into account
for each photon), following the strategy of [21]. In addition, for diffuse illumination, more
photons are sent with grazing angles to better explore the rare but long trajectories that control
the behavior of M(2) in optically thin slabs. In practice the code is run on a supercomputer,
which allows to run 30 simulations in parallel, each using 128 × 108 photons (109 for directional
observations). This amount of photons is needed to capture the divergence of the normalized
moments caused by very rare events.

In Figs. 2 and 3, the shaded vertical bars show the histograms of the total paths traveled by
photons in the Monte Carlo simulations. This validates the analytical formulas (Eqs. (8), (9),
(12), (13)) obtained for collimated and diffuse illumination. Monte Carlo simulations are also
used to obtain the pdfs for directional observations (Fig. 4), which again supports the theoretical
derivations for sufficiently long paths (Eqs. (32) and (36)).

The ray tracing code is further used to investigate the behavior of the moments at low optical
thickness. To this end, the moments are computed for 30 distinct values of τ, ranging from
10−6 to 1. These simulations are first used to validate the estimations of the moments derived
in Section 2. Figures 5 and 6 show the second and third moments obtained for a slab with
H = 1 m, for collimated and diffuse illumination. These simulations confirm the formulas
derived analytically, in particular Eqs. (39), (40), (42), (45), (46). The same slab is used to
simulate directional observations. Figure 7 shows the results for reflectance observations but
the results for transmittance observations are not shown since they are redundant with those
for reflectance. Again, these simulations confirm the analytical computations for singly and
twice-scattered photons, namely Eqs. (50), (54), (55), (57), (58). For angularly integrated
reflectance and transmittance observations, the simulations were used to confirm the assumption
that singly-scattered photons dominate the 0th moment of p(l), which validates the expressions of
the moments derived for these configurations.

Because our analytical derivations do not extend beyond singly or twice-scattered photons, the
ray tracing code is used to further explore the τ dependencies for higher orders of scattering.
Simulations are also performed for anisotropic scattering, i.e., g ≠ 0 in the Henyey–Greenstein
phase function. These complementary simulations are further discussed in Section 4.
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Fig. 6. Same as Fig. 5, but for diffuse illumination (µ(2) = M(2)/4H2 and µ(3) = M(3)/8H3).
Note that the third moment for twice-scattered photons is not shown because it would
superimpose with that of singly-scattered photons.

5. Applications and extensions

5.1. Applications to optical medium measurements

The pdfs derived for singly- and twice-scattered photons (reflected and transmitted) suggest that
such measurements (which imply time-resolved measurements) could be used to estimate le
for optically thin slabs, when low orders of scattering prevail. For instance, Eq. (13) does not
depend on H, hence p1,r(0) directly gives access to le, meaning that time resolved reflectance
measurements could directly provide le. In combination with an estimation of H (for instance
estimated from the discontinuity of the derivative of p1,r(l) at l = H(1 + s0), or from the shape of
the pdf beyond H(1 + s0)) this could allow to estimate the optical thickness of the slab from a
single reflectance measurement. Equivalently, transmittance measurements could be used. In
the case the full pdf is not measured, but its second moment is accessible (as in e.g. [10]), the
obtained dependence on τ suggests that this fundamental quantity can be estimated even at very
low optical thickness. More interestingly, the lower the optical thickness, the larger the variance
of the photon path length distribution, suggesting an increased sensitivity to the thinnest media,
contrary to what is usually experienced in remote sensing. Although the present study is mostly
theoretical, it provides leads for innovative remote sensing studies of optically thin media.

5.2. Higher orders of scattering

For non directional simulations, our analytical calculations did not extend to double scattering.
When accounting for double-scattering without under collimated illumination it was shown [23]
that at low optical thickness M(2)

2,t ∼ H2/4 (their Fig. 3), which matched very well their Monte
Carlo simulations. Assuming that the pdfs of reflected and transmitted photons have similar tails
for a given order of scattering, and assuming that higher-than-two orders of scattering are not
significant, this suggests that for collimated illumination:

µ2
0M(2)

H2 ∼ 1 + µ0. (63)



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40984

It means that the contributions to the second moment are equally split between single and
double-scattering, and between reflected and transmitted scattered paths. Figure 5 shows that
this equation perfectly matches the second moments simulated with the ray tracing code. Again
following [23] we hypothesize that the contribution of the twice-scattered photons to higher
moments is such that:

µn
0M(n)

2,t

Hn ∼
µn

0M(n)
2,r

Hn ∼
µn−1

0
4
τ2−n
Γ(n), (64)

which Fig. 5 also confirms. This overall suggests that:

µn
0M(n)

Hn ∼ 1 +
µn−1

0
2
τ2−n (Γ(n − 1) + Γ(n)) . (65)

This equation assumes that higher-than-two orders of scattering do not contribute to the asymptotic
behavior of the moments, which is again confirmed by Fig. 5 for the third moment.

The same strategy is adopted for diffuse illumination. Contrary to collimated illumination,
Monte Carlo simulations suggest that the contribution of twice-scattered photons to the second
moment is half that of singly-scattered photons (i.e., M(2)

1,r = 2M(2)
2,r ). A possible explanation is

that singly-scattered photons with long trajectories include those entering the slab at grazing
angles (which can then be scattered in any direction) and those being scattered into the plane.
For twice-scattered photons, grazing incident angles do not contribute because the probability
to remain within the slab after scattering is very low. On the contrary, for photons already
scattered into the plane, the probability to be scattered again before escaping is significant,
without changing the overall distance. As already pointed out it seems that both contributions
(grazing incident angles and scattering into the plane) are as likely, explaining the factor 1/2 for
twice-scattered photons. As for collimated illumination we can hypothesize that:

M(n)
2,t

2nHn ∼
M(n)

2,r

2nHn ∼
1

2n+1 τ
2−n
Γ(n). (66)

It implies that the divergence of the second normalized moment in the case of diffuse illumination
is only due to directly transmitted photons, while for higher moments directly transmitted,
singly-scattered and twice-scattered contribute the same order of magnitude τ2−n, with supposed
contributions Γ(n − 2)/2n−1, Γ(n − 1)/2n−1, and HnΓ(n)/2n, respectively. As for collimated
illumination, higher orders of scattering are assumed not to dominate the asymptotic behavior.
All these expressions and conclusions are supported by the ray tracing simulations, as can be
seen in Fig. 6.

For directional observations, the calculations already encompass double scattering. Here we
argue that higher orders of scattering are too rare to dominate the asymptotic behavior. Given that
singly-scattered photons necessary correspond to short trajectories, it suggests that the overall
behavior of the moments is driven by twice-scattered photons. This hypothesis is fully supported
by the simulation results shown in Fig. 7.

5.3. Anisotropic scattering

So far, all the calculations presented in this study assumed isotropic scattering. This is an
ideal case, poorly representative of actual scattering media. Monte Carlo simulations using
an Henyey–Greenstein phase function with g ≠ 0 suggest that the asymptotic behavior of the
moments is unchanged for collimated illumination, except for an offset corresponding to a
scaling of the τ dependency. Figure 8 shows the moments computed from the simulations
for g = 0, g = 0.5 and g = 0.8 (for collimated illumination with µ0 = 0.8). In practice, this
scaling corresponds to the probability to be scattered into the horizontal plane when coming
from the direction θ0, namely P(θ0, π/2). For diffuse illumination, the ray tracing simulations
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Fig. 7. Same as Fig. 5, but for directional reflectance observations (µr = 0.5) under
collimated illumination (µ0 = 0.8). Here µ(2) = M(2)/H2 and µ(3) = M(3)/H3.

with anisotropic scattering show that the asymptotic behavior of the moments is exactly the
same as for isotropic scattering. In particular the phase function has no impact on M(2) at low
optical thickness, because the asymptotic behavior is driven by directly transmitted photons. It
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Fig. 8. Same as Fig. 5, but for µ0 = 0.8 and for 3 different Henyey–Greenstein phase
functions (g = 0, g = 0.5, g = 0.8). The lines correspond to a scaling of the paths by
P(µ0, π/2), where this quantity for Henyey–Greenstein phase function is computed after
Eq. (76).



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40986

implies that measurements performed in these conditions would directly provide information
on the optical thickness, without knowing the phase function, which is an important invariance
result. In Appendix B, detailed calculations are performed to support these computational results.
When considering directional reflectance or transmittance observations, the scaling includes the
contribution of single scattering (P(θ0, θr)), which determines the 0th moment. The angularly
integrated reflectance and transmittance observations are also altered by the impact of the phase
function on the 0th moment.

6. Conclusions

Based on comprehensive radiative transfer calculations, we have derived the path length probability
distribution functions of singly- and twice-scattered photons, reflected by or transmitted through
a homogeneous, non-absorbing, isotropically scattering slab. Various illumination and viewing
conditions were investigated, including collimated and diffuse illuminations, and directional
reflectance and transmittance configurations. The main focus was on the asymptotic behavior of
the distributions and their corresponding moments for optically thin slabs, which have been far
less studied than optically thick media.

Under collimated illumination, the second moment of the photon path distribution exceeds
the ballistic limit H2, and the higher order normalized moments diverge as τ2−n. For diffuse
illumination, ballistic photons are responsible for the divergence of the second normalized
moment as ln τ, which provides a means to estimate τ from the variance of the distribution.
Higher order normalized moments diverge as τ2−n. When only reflected or transmitted photons
are considered (under directional or angularly-integrated viewing), the normalized moments
diverge as τ1−n, implying that the second normalized moment diverges as τ−1.

Although the detailed calculations are only performed for isotropic scattering, Monte Carlo
ray-tracing simulations show that the τ dependency is unchanged for anisotropic scattering,
except for a scaling (related to the probability to be scattered parallel to the slab) in the case of
collimated illumination. Most interestingly, under diffuse illumination the asymptotic behavior
of the moments is insensitive to the phase function. Monte Carlo simulations were also used to
explore the impact of higher orders of scattering, confirming that the asymptotic behavior of the
moments is dominated by photons scattered once or twice, with contributions of the same order.

In summary, this mostly theoretical work sheds light on a poorly-investigated research topic.
As an important application, it provides physical insight to advance the remote sensing of
optically thin media. In particular, our results for collimated (and pulsed) sources associated
with directional sensors could be applied to (ranged-gated) bistatic lidar systems deployed either
on ground (e.g., [27,28]) or in space (e.g., [29]). By contrast, our results for diffuse illumination
and angularly-integrated sensing are better suited for the analysis of laboratory measurements.

Appendix A. Detailed calculations of the pdfs for diffuse illumination

A.1 Singly scattered transmitted photons

The integrals over z0 in Eq. (18) were computed in Section 2.1.1. The first term of the full integral
of Eq. (18) is evaluated first:

I1 =

∫ 1

H/l
µ2

0

(︃
− ln

(︃
1 −

H
µ0l

)︃
−

H
µ0l

)︃
dµ0,

=
1
l3

(︃
−

1
3

[︃
H3 ln

(︃
H

l − H

)︃
+

1
2

H3 − H2l −
1
2

Hl2 + l3 ln
(︃
l − H

l

)︃]︃
−

H
2
(l2 − H2)

)︃
.

(67)
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The second term reads:

I2 =

∫ H/l

0
µ2

0

(︃
− ln

(︃
H − µ0l
l − µ0l

)︃
+

l − H
µ0l

)︃
dµ0,

=
1
l3

(︃
−

1
3

[︃
H3 ln

(︃
H

l − H

)︃
−

3
2

H3 +
1
2

H2l + Hl2 + l3 ln
(︃
l − H

l

)︃
− H4 ln

(︃
l
H

− 1
)︃]︃
+

l − H
2

H2
)︃

.

(68)
Equation (19) is obtained by summing both contributions.

A.2 Singly scattered reflected photons

The integrals over z0 in Eq. (22) were computed in Section 2.1.2. We now compute the integrals
over µ0 for l ≥ 2H:

I1 =

∫ 1

H/(l−H)

µ2
0

(︃
ln

(︃
1 −

H
µ0l

)︃
+

H
µ0l − H

)︃
dµ0,

=
1

3l3

(︄
l3 ln

(︃
1 −

H
l

)︃
−

(︃
lH

l − H

)︃3
ln

(︃
H
l

)︃
+2H

[︄
1
2

(︄
(l − H)2 −

(︃
H2

l − H

)︃2)︄
+ 2H

(︃
l −

lH
l − H

)︃
+ 2H2 ln

(︃
l
H

− 1
)︃]︄)︄

.

(69)

Likewise,

I2 =

∫ H/(l−H)

0
µ2

0

(︃
ln

(︃
µ0

1 + µ0

)︃
+

1
µ0

)︃
dµ0,

=
1
3

(︄(︃
H

l − H

)︃3
ln

(︃
H
l

)︃
−

1
2

(︄(︃
l

l − H

)︃2
− 1

)︄
+ 2

H
l − H

− ln
(︃

l
l − H

)︃
+

3
2

(︃
H

l − H

)︃2
)︄

.
(70)

Equation (23) is obtained by summing both contributions.

Appendix B. Calculations for anisotropic scattering

Here we demonstrate why anisotropic scattering simply translates into a scaling (with respect to
anisotropic scattering) of the moments at low optical thickness for collimated illumination, while
it does not alter the moments for diffuse illumination. We expand Eq. (5) in the general case:

p(l|z0)dl =
H − z0

(l − z0s0)2
P(θ0, θt)

sin θt
dle−

l−l0
le . (71)

If we know focus on the long trajectories, since they correspond to scattering in the plane
(θt = π/2) we obtain:

p1,t(l) ∼ e−
l
le

s0
le

∫ H

0

H − z0

l2
P(θ0, π/2)dz0,

∼
s0
2le

P(θ0, π/2)e−
l
le

(︃
H
l

)︃2
.

(72)

Based on this, M(2)
1,t ∼

H2

2µ0
P(θ0, π/2). Likewise it can be shown that M(2)

1,r ∼
H2

2µ0
P(θ0, π/2).

The validity of this approximation is tested in the case of the Henyey-Greenstein phase function
PHG. PHG(θ0, ϕ0; θ, ϕ) corresponds to the probability that light be scattered in direction (θ, ϕ)
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when coming from the direction (θ0, ϕ0). This probability only depends on the deviation angle Θ
between the incident and scattered directions, and is such that:

PHG(θ0, ϕ0; θ, ϕ) = PHG(Θ) =
1

4π
1 − g2(︁

1 + g2 − 2g cosΘ
)︁ 3

2
, (73)

where g is the asymmetry parameter, defined as:

g =
1
2

∫ π

0
cosΘPHG(Θ) sinΘdΘ. (74)

As for the isotropic case, we define:

PHG(θ0, θ) =
∫ 2π

0
PHG(θ0, ϕ0; θ, ϕ) sin θdϕ =

∞∑︂
0

akPk(cos θ0)Pk(cos θ) sin θ, (75)

where Pk is the kth Legendre polynomial and ak =
2k+1

2 gk [30]. Finally, we have

PHG(θ0, π/2) =
∞∑︂
0

2k + 1
2

gkPk(cos θ0)Pk(0), (76)

which is the scaling used in Fig. 8 for the theoretical lines.
For diffuse illumination, long trajectories consist of photons scattered in the plane (for any

incident angle), and photons which entered the slab at a grazing angle, whatever their direction
after scattering. This can be seen as the two terms of Eq. (18). For the first contribution (photons
scattered in the plane), we duplicate the computations performed for collimated illumination and
integrate over all incident directions, to get (for sufficiently large l values):

p1,t(l) ∼
1
le

e−
l
le

(︃
H
l

)︃2 ∫ π/2

0
P(θ0, π/2) sin θ0dθ0. (77)

Using the expansion of P(θ0, π/2) in Legendre polynomials, and the fact that Pk(0) = 0 for odd k,
and that for even k>0, Pk is symmetric and averages to 0, we obtain:∫ π/2

0
P(θ0, π/2) sin θ0dθ0 =

∫ 1

0

∞∑︂
k=0

akPk(µ0)Pk(0)dµ0 = a0. (78)

For grazing angles (θ0 ∼ π
2 ), we first note that sin θtdθt = dz0

Hs0−l
(l−z0s0)2

∼ dz0s0
H−z0

(l−z0s0)2
, where we

have used the fact that l ∼ l0. Hence we can use the variable θt for the integration instead of z0 as
follows:∫ H/l

0

∫ (l−H)/(s0−1)

0

H − z0

(l − z0s0)
2

p(π/2, θt)
sin θt

dz0dµ0 ∼

∫ H/l

0

∫ 1

0
2µ0P(π/2, θt)dθtdµ0 ∼ a0

H2

l2
,

(79)
where we’ve again used the properties of the Legendre polynomials to get

∫ 1
0 P(π/2, θt)dθt = a0.

It suggests that the contribution of grazing photons is similar to that of photons scattered in the
plane. This is consistent with the fact that I1 ∼ I2 (Eqs. (67) and (68)) for isotropic scattering
and the physical explanation presented in the main text to explain the different contributions of
single and twice-scattered photons. Overall, for diffuse illumination, the scaling equals 2a0 = 1
whatever the phase function, because a0 =

1
2 corresponds to the normalization of the phase

function. This highlights the total insensitivity of the asymptotic behavior of the moments to the
details of the phase function, and in particular to g. Note that the same conclusions could be
obtained for reflected paths.
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